Compag Computer Corporation

Intel Corporation

Phoenix Technologies, Ltd.

EXTENDED SYSTEM CONFIGURATION DATA
SPECIFICATION

Version 1.02A

May 31, 1994

This specification is, and shdl remain, the property of Compag Computer Corporation ("Compaq")
Phoenix Technologies LTD ("Phoenix™) and Intel corporation ("Intel").

NEITHER COMPAQ, PHOENIX NOR INTEL MAKE ANY REPRESENTATION OR
WARRANTY REGARDING THIS SPECIFICATION OR ANY PRODUCT OR ITEM
DEVELOPED BASED ON THIS SPECIFICATION. USE OF THISSPECIFICATION FOR
ANY PURPOSE ISAT THE RISK OF THE PERSON OR ENTITY USING IT. COMPAQ,
PHOENIX AND INTEL DISCLAIM ALL EXPRESSAND IMPLIED WARRANTIES,
INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESSFOR A PARTICULAR PURPOSE AND FREEDOM
FROM INFRINGEMENT. WITHOUT LIMITING THE GENERALITY OF THE
FOREGOING, NEITHER COMPAQ, PHOENIX NOR INTEL MAKE ANY WARRANTY
OF ANY KIND THAT ANY ITEM DEVELOPED BASED ON THIS SPECIFICATION, OR
ANY PORTION OF IT, WILL NOT INFRINGE ANY COPYRIGHT, PATENT, TRADE
SECRET OR OTHER INTELLECTUAL PROPERTY RIGHT OF ANY PERSON OR
ENTITY IN ANY COUNTRY.

Copyright & 1993 Compag Computer Corp., Intel Corp., and Phoenix Technologies, Ltd.
Part Number 485547-001

ESCD Specification

V1.02A

Revision History

I ssue Date

Comments

October 5, 1993

Prdiminary - verson 1.00

December 28, 1993

Changed reserved fidd in the ECD_FREEBRDHDR to indicate if
the PnP 1SA or PCI device is re-configurable by the PnP BIOS.

Verson 1.01

February 14, 1994

Claification of CannotConfig bit - Version 1.02

May 31, 1994

Clarification of System Device Node interface - Version 1.02A

escd.rtf

Page 2

ESCD Specification

V1.02A

Table of Contents

SIS Lo TS (0 Y/ 2
I 1 1 0 [o 1 o 5
0 00 RS STRR 5
1.2 REGED DOCUMENES......ciueeeeeeieeiesieeiesieesieeeesseesteeeesseesseenseeseesseessesnessseensesnenns 6
1.3 Termsand ADDIeVIationsS............coeveiirieieee e 6
P 0 4 = o SRR P PRSPPSO 7
NS S U 0100 S 7
2.2 Sot Records Without 'cfg' FIlES..........ooveieieeee e 7
GRS [0 07285 T 0111 o1 USRS 8
130 I/ 1= 1 07 o TS 8
I (0= 01 To TS o] S 8
G Y (87 IS Lo 1 7S 8
4. Storing of DCD INFOIMBLION..........ccueieeiicie et sr e s eas 8
5. ReCONfIQUIation Of DCDS.........cceiieieieiesiesie sttt nre s 10
5.1 Re-configurability with Legacy ECUS..........c.cooeeiiiieiicecee e 10
5.2 Implementing Disabled DCD FUNCHONS.........cccoierinereneneeeeeeeeseesee e 11
5.3 Implementing Locked DCD FUNCLIONS.........ccceiiiieieeie e 11
5.4 DCD Configuration EITOIS.........cceeerieieiieiiesiesiesie e 12
55 Plug and Play [SA deVICES........ccoueieeieee et 12
5.6 PCl DEVICESoeeeeieeiieeieeie st e sie e sttt et ste e sseeseeneesreesesneenseeneas 12
(T =S @D I D= o] o 1[0 1SS 13
6.1 Difference Between EISA and ISA SYSIEMS.......ccovirinireneeeeeeeeesesesieie 13
6.2 TNEESCD fOMMEoeivieeieieieie ettt s 13
T USINGTNE CM ...ttt bbbt e et e enenne s 14
8. PNP BIOS ESCD ACCESS INEIACES......ciieieiiiiiieesie et 14
8.1. Function 41h - Get Extended System Configuration Data (ESCD) Information 15
8.2. Function 42h - Read Extended System Configuration Data (ESCD)................ 17
8.3. Function 43h - Write Extended System Configuration Data (ESCD)................ 18
Appendix A: Extended System Configuration Data (ESCD)ccooveeveeeeiecceveesecee e, 21
Appendix B State Table for DCD COnfigUIation...........ccceoererenerenineeeeeeseesee s 25
escd.rtf Page 3

ESCD Specification V1.02A

Appendix C Detailed ESCD Data Structure SpecifiCation............coceevereenerceeneesiesensieeens 27
Appendix D ESCD Access Functions REtUN COdES.........ccveveveereeiesiesie e 34

escd.rtf Page 4

ESCD Specification V1.02A

1. Introduction

In order to support the automatic configuration of plug and play devices (eg., PCl, Plug and Play 1SA)
on platforms that include a stlandard expansion bus (e.g., ISA, EISA), nontvolatile storage is required to
dore information about the system resources (i.e., IRQ, 1/0 port, memory window, DMA channdl)
used by non-plug and play devices. The Plug and Play BIOS Specification [P&PBIOS] describes two
techniques for gtoring this information. For low end systems that have very little available non-volatile
storage, the information maintained in non-volatile sorage is limited to describing the combined set of
resources alocated to non-plug and play devices. Thisinformation can be stored in compact coded bit
grings. The Plug and Play BIOS Specification describes two interfaces to read and write this
information, functions 09h and OAh (Set and Get Staticdly Allocated Resource Information). The
information provided through these interfaces is sufficient to dlow for the full autoconfiguration of plug
and play devices with platforms running plug and play operating sysems. Platforms with non-plug and
play operating systems or employing add-on plug and play support (eg., Plug and Play Kit for MS-
DOS and Windows'), may not be able to automatically configure al plug and play devicesin al cases.
For support of these systems, it is recommended that the Extended System Configuration Data (ESCD)
format be employed to store configuration information in nontvolatile storage.

The ESCD dructure format dlows the storage of detailed configuration information on a per device
basis rather than the combined configuration storage described in the preceding paragraph. 1n addition,
the ESCD format accommodates storage of configuration informetion for plug and play devices The
dorage of the detalled configuration information alows the BIOS configuration software to work
together with configuration utilities to provide robust support for nonplug and play as well as plug and
play devices The detalled configuration information for non-plug and play devices can be used by
configuration utilities (eg., ISA Configuration Utility in the Plug and Play Kit for MS-DOS and
Windows) to provide users with a detalled display of system configuration as well as the ability to
perform robust resource baancing when adding new cards. The configuration information for plug and
play devices is used to either store information about the last working corfiguration for the device or
indicate that the configuration for a plug and play device should be locked, dlowing the card to dways
be configured to the same settings. The former capability dlows the robust resource baancing
performed by configuration utilities to be employed in the configuration of plug and play devices. The
latter capability dlows plug and play devices to be automaticaly configured for systems running non
plug and play devices.

1.1 Purpose

This document is intended to provide sufficient information to system software developers to enable
them to utilize the configuration information about Dynamicdly Configurable Devices (DCDs) for

successful configuration of a system. Two varieties of DCDs are consdered in this document: PCI
devices and Plug and Play 1SA devices.

This document describes the format of non-volatile storage for configuration (and re-configuration) of
DCDs. Thefollowing sections address these topics:

"MSDOS isaregistered trademark and Windows is atrademark of Microsoft Corporation.

escd.rtf Page 5

ESCD Specification V1.02A

concepts and terminology

configuration of Plug and Play resources in the Extended Configuration Data (ECD)
mechaniam for locking a single function inaDCD

mechaniam for disabling asngle functioninaDCD

primitives to indicate fallures while configuring a sngle function inaDCD

data formats that are used to store the Plug and Play device status information.

The firgt desgn god was to use, whenever possble, the existing definition of EISA data format as
defined in the EISA Specification [EISA]. By adhering to this definition and providing only the
necessary extensions, we are assured d upward compatibility with the current implementations of the
EISA Configuration Utility (ECU) and device drivers. The second god was to extend this design to ISA
systems 0 that a common Plug and Play implementation can be provided.

1.2 Related Documents

The fallowing is a lig of references containing information that is relevant to the discusson in this
document:

[EISA] EISA Specification, Verson 3.12, BCPR Services.
[PCI] PCI Loca Bus Specification, Revison 2.1, PCI Specid Interest Group.

[P&PBIOS] Pug and Play BIOS Specification, Verson 1.0a, Compag Corp., Intel Corp., and
Phoenix Technologies, Ltd.

[PnPISA] Plug and Play 1SA Specification, Verson 1.0a, Intel Corp. and Microsoft Corp.

[DDI] Plug and Play Device Driver Interface for Microsoft Windows 3.1 and MS-DOS,
Verson 1.0c, Microsoft Corporation.
[ACFG] Plug and Play BIOS Extensions Design Guide, Revison 1.2, Inte Corp.

1.3 Terms and Abbreviations

AcfgBIOS Auto-Configuration BIOS. Sysem BIOS that contains Intd's Plug and Play BIOS
extensons to configure DCDs as required.

CM Configuration Manager. DOS driver that is respongble for configuring DCDs that are
not configured by the Acfg BIOS. It provides access to the configuration space (as
defined in [DDI]) for devices present in the system.

DCD Dynamicaly Configurable Device. A device whose configuration can be changed (i.e,
its resources can be relocated) dynamicaly. In this document we consider two instances
of DCDs. Plug and Play 1SA devices and PCI devices.

Disabled DCD A DCD is disabled when the resources that are currently in use by the DCD ae
released and its functiondity is no longer available to the user.

escd.rtf Page 6

ESCD Specification V1.02A

ECD Extended Configuration Data. ECD is a data Structure that is used to store information
about DCDs that could not be stored in the EISA structures.

Enabled DCD A DCD isenabled when it is using system resources.

ESCD Extended System Configuration Data. ESCD is the data format for storing resource
information describing (E)ISA devices and DCDs.

Locked DCD A locked DCD is a DCD whose resources cannot be dynamicaly re-configured. The
DCD is bound to its current resources until the lock is released.

NVS Non-Volatle Storage. NVS is the place where the ESCD is stored. It could be ether
an NVRAM (in EISA systems and in many ISA systems) or adatafile (in legacy 1SA
systems). The storage mediaisimplementation dependent.

Sot A dot isapogtion in the syslem where a board is inserted. ESCD defines a dot record
as adata structure that stores resource information for the device occupying that dot. In
ISA sysems a dot is merely an identifier used to provide the abstraction of physicd
dot. Sot zero is reserved for the Motherboard and dots 16 through 64 are reserved for
virtud devices.

Virtud Device A device that is not associated with a specific physica dot. Information about virtua
devicesiskept in virtud dots.

2. Concepts

2.1 Assumptions

This document assumes that the reeder is familiar with the EISA structures and definitions as specified in
the EISA Specification [EISA]. Unless otherwise stated, this document conforms to, and complies with
the EISA specification. This document further assumes that the reeder is familiar with the configuration
of DCDs as described in [PCI] and [PnPISA].

This document frequently uses the terms function and devicer. When the term device is used, it
represents the physical hardware. A single device and its configuration resources are trandated into a
gangle function. This document also uses the terminology card and board. Both of these terms are
synonymous with the term device. On PCI systems, the terms device and function are used to identify
the location of a specific PCl device such as IDE, SCS, etc. A function as defined in the EISA
gpecification [EISA] and ESCD is an entity that describes resources and information about devices. A
device can have severd functions. For example, a Plug and Play 1SA device can have two functions,
with each function using resources independently. It is also possible that a device has a single function.

2.2 Slot Records Without 'cfg’ Files

The EISA specification [EISA], specifies that board and dot id configuration information is kept in bytes
zero and one of the ID and dlot information fidld. Byte one of this field contains four reserved bits
numbered three to sx. The ESCD specification redefines the bit six of byte one in the ID and dot
information field from reserved bit to bldSotNoCfgFile bit. This bit will be set to one when the dot
board record is created by the Configuration Manager or the syssem ACFG BIOS. When s, this bit

escd.rtf Page 7

ESCD Specification V1.02A

should be interpreted to mean that this dot record was auto-configured and therefore doesn't require
any configuration files for determining the device configuraion posshiliies. This new
bldSotNoCfgFile bit is defined in the EISAIDSLOTINFO sructure in the escdfmt.h (see attached
Appendix C).

It is the respongibility of the Configuration Utilities to correctly interpret this bit and when sgt, not make
requests for configuration files.

3. Slot Assignment

This section describes the locations where resource information for different device types will be stored
in ESCD.

3.1 Motherboard

As defined in the EISA specification, mother-board configuration information is dways stored in dot
zero as multiple functions that loosely correspond to the actud ISA devices that are embedded in the
motherboard. The ESCD gpecification requires that only the 1SA devices embedded in the
motherboard be described as mother-board functions. As described in section 5.6, PCl device
information is aways dored in virtud dots. This means that for systems that contain PCl devices
embedded in the motherboard (such as IDE and or SCSl) and are attached to the PCI bus, the virtua
dots will be used to store the PCI-specific configuration information for the motherboard (while
retaining the ISA configuration information in dot zero).

The Acfg BIOS uses BrdConfgStat, i.e, bit 7 in byte 1 of ID and slot information field for dot zero
(refer to [EISA]), to indicate information inconsstency for motherboard devices. When the Acfg BIOS
detects inconsstency between the Setup CMOS and NV S for motherboard data, BrdConfgStat will
be set to one. It isthe respongbility of the Configuration Utility to correctly interpret this bit and take the
appropriate action.

3.2 Expansion Slots

Expansion dots are defined as dot numbers 1 through 15 [EISA]. The configuration informetion for the
current generation of (E)ISA devicesis gored in expanson dots. Expansion dots are also used to store
information about Plug and Play ISA devices. Since the Plug and Play 1SA devices are dynamicdly re-
configurable, the ESCD uses the ECD to capture the additiona information that needs to be stored.
Section 4 and Appendix A describe ECD in greater detall.

3.3 Virtual Slots

Virtua dots are defined as dot numbers 16 through 64 [EISA]. These are reserved for configuration
information for virtua devices. They can be safely used to store configuration information for devices
other then those defined by the EISA specification [EISA]. Virtud dots are used to Store the
configuration information for PCl devices. In case of multi-function PCl devices, asngle virtud dot will
be used for multiple PCI functions that are associated with one PCI board.

Support for virtud dotsis optiond in the EISA specification. However, the ESCD specification requires
that EISA sysems support virtud dots. The number of virtua dots that need to be supported is
dependent on the number of PCI devicesthat can be present in the system.

escd.rtf Page 8

ESCD Specification V1.02A

4. Storing of DCD Information

When compared to (E)ISA devices, DCDs need to store certain additiona information. This additiond
information is stored in the ECD as free form data. The ECD dructure is defined in escdfmt.h (see
Appendix C). ECD isdwaysthe last function in the dot record for aDCD and isdways disabled. The
function information byte in the ECD (i.e,, the bFunclInfo field) must be set to vaue OxCO to identify the
ECD as an EISA free-format disabled function. The format for each type of DCD is now described in
turn.

A dngle-function PCI deviceis described as follows:
i) a dandard EISA function containing the resource usage for function number O on the PCI
device
i) the ECD

If the PCI device has severa functions, there are severa standard EISA functions in the dot record
prior to the ECD, with each standard EISA function corresponding to one function in the PCI device.
Since there is no correspondence between the EISA function number and the PCI function number (i.e,
EISA function number one could be describing the PCI device function number three), the ECD
contains the necessary information that allows correct interpretation. For more details see section 5.6.
Resource information for each function of the multi-function PCI device is stored within the same virtud
dot.

The following figure illustrates the condtituents of one virtud dot record for a PCI device with two PCI
functions.

ESCD Component Description

Function O Standard EISA function to store resource
information for the PCI function #0

Function 1 Standard EISA function to store resource
information for the PCI function #3

Function 2 Disabled function, containing the ECD for PCI
functions #0 and #3.

A sdngle-function Plug and Play 1SA card is described asfollows:
i) adandard EISA function containing resource usage for one function of the device
i) the ECD

escd.rtf Page 9

ESCD Specification V1.02A

If the Plug and Play 1SA card has severa functions, there are severa standard EISA functionsin the dot
record prior to the ECD, with each standard EISA function corresponding to one function on the board.

The following figure illustrates the layout of adot record for athree-function Plug and Play 1SA card:

ESCD Component Description

Function O Standard EISA function to store resource
information for PnP ISA logical device# 0

Function 1 Standard EISA function to store resource
information for PnP I SA logical device# 1

Function 2 Standard EISA function to store resource
information for PNP I SA logical device # 2

Function 3 Disabled function, containing the ECD

5. Reconfiguration of DCDs

The DCDs are re-configurable a run-time, while the traditiona (E)ISA devices are not. When an
(E)ISA device is configured a a particular resource, either some jumper needs to be changed or a
software utility needs to be run to re-configure the device &oft-settable (E)ISA devices alow for
greater ease-of-use as far as re-configuration is concerned). On the other hand, PCI devices can be
configured a one of severa resource vaues depending on the availability of resources. Thisimplies that
the resources that are currently allocated to DCDs can be re-used for some gtatic (E)ISA device. This
would be desrable if, for example, the DCD resources are the only resources with which the static
(E)ISA devices can be configured. At the next system boot, the DCD would then get re-configured
with a different, non-conflicting resource.

Configuration utilities that understand the ESCD will be cognizant of DCDs (and the fact thet they are
re-configurable) and will be able to utilize the resource information of the DCDs and possibly re-alocate
those resources to an add-in card when necessary. However, there are current implementations of
ECUs that are not aware of DCDs and do not understand ESCD. In order to make re-configuration
work even with these legacy ECUs, afew additiond requirementsin the ESCD must be specified.

There are two type of DCDs - namely those functions that need to be configured and activated by the
PnP BIOS prior to OS initidization (bootable DCDs) and functions that can be reconfigured by the
Configuration Manager during OS initidization(non-bootable DCDs). The ahility to re-configure DCDs
is dependent on the presence and capabilities of the PnP BIOS and Configuration Manager. The re-
configuration information for nonbootable DCDs is dways available to the Configuration Manager who
can re-configure and activate any non-active DCD function. DCD functions that participate in the boot
process (i.e, they have the expanson AT-BIOS) can be only re-configured by the system BIOS that
contains PnP BIOS extensions. If the PnP BIOS does not have access to NVS to store the re-
configuration information about bootable DCD function, then the bootable DCD function is not re-

escd.rtf Page 10

ESCD Specification V1.02A

configurable. To provide the Configuration Utility with the knowledge aout DCD function re-
configurability, the utility can examine the fwECDFuncsCannotConfig bit-mep field defined in the
ECD_FREEFORMBRDHRD dgructure. Each it in the bit-map field that is set to O representsa DCD
function thet is re-configurable.

5.1 Re-configurability with Legacy ECUs

The DCD configuration information will be stored in the gppropriate dots as described in Chapter 4 of
this document. Because the dot records (virtud dots for the PCI devices or the expansion dots for
Plug and Play ISA boards) containing DCD records do not have corresponding CFG files, a legacy
ECU* will delete these records from NVS. Since the ECU will not consider the resources contained in
these records, it will be able to re-alocate the resources of the DCDs.

At the next boot, the DCDs will get re-configured at their new vaues (around the resources being used
by (E)ISA devices). Note that this re-configuration at boot requires the presence of the Configuration
Manager (CM). Thus, athough the ECU is unaware of the DCDs and the CM, it is able to operate
with the CM in achieving re-configurability.

New ECUs can look at the additiond fields in the ESCD and achieve both the disable functiondity and
independently control re-configurability of DCD resources. The additiond field that will dlow new
ECUsto support disabling of functions is the wECDFuncsDisabled bit-map in the ECD.

5.2 Implementing Disabled DCD Functions

The ECD (which is present for every DCD) contains the fwECDFuncsDisabled fidd. Thisfidd isa
bit-map of disabled functions for that particular device (board). Since the ECD is afree format disabled
function it will be ignored by the ECU. The Acfg BIOS or CM will use the disabled bit map in the ECD
to determine which functions in that device need to be configured.

The function enable field in the EISA standard function of each DCD will be used by the Acfg BIOS
and the CM to determine whether the resources for that function have been locked (or reserved) to
their previous configuration. If the enable bit is found to be set for a particular DCD function, then that
DCD function needs to come back up with the same resource configuration. If the DCD function is
found to be disabled, then the Acfg BIOS or the CM does not have to configure that DCD function to
the resources specified in the function.

5.3 Implementing Locked DCD Functions

The EISA specification only defines the mechanism for locking resources a the granularity of boards
[EISA]. Thus if a board is locked, dl the functions within that board are dso locked. Similarly,
unlocking a board unlocks dl the functions within that board. A board (and dl of the functions
associated with the board) is locked by setting the lock bit in byte one of the ID and slot information
field of that board.

'For this sub-section only, unless otherwise specified, an ECU refersto alegacy ECU.

escd.rtf Page 11

ESCD Specification V1.02A

With the ESCD, a finer granularity of locking is achieved for DCDs because the user is now able to
reserve the resources at the DCD function level without locking dl the resources at the board levd.
This is achieved by the combination of turning the lock bit in the board on and turning on the enable
bit for the DCD function.

When the datus of the standard format EISA function that describes the corresponding DCD is
changed from disabled to enabled, and the lock hit for the board is enabled, the configuration resources
for the target device become locked. The Acfg BIOS or CM will check both the board lock bit and
the function enable bit before attempting to configure the device.

To summarize, the board lock hit indicates that there is one or more functions with resources that are
locked. The enabled functions in that device are locked and their resources are fixed while the
resources of disabled functions can be re-configured as required. See Appendix B for a more detaled
explanation on the interpretation of configuration states.

It is the respongbility of the CM or the Configuration Utility to correctly update both the board lock bit
and the standard EISA function disable bit when processing the lock and unlock requests for the DCDs.

5.4 DCD Configuration Errors

Depending on the requirement of device availability a pre-boot or post-boot time, either the Acfg
BIOS or CM will configure the DCDs. Because device re-configuration may not dways succeed, the
agent atempting to configure the DCD needs a mechanism for reporting configuration errors.

The EISA specification only defines the mechanism for sgnding configuration fallure a the granularity of
boards [EISA]. Thus, there is no way to distinguish between configuration failures occurring on more
than one function. Board configuration error is indicated by setting the configuration status bit in byte
one of the ID and slot information field of that board to one.

With the ESCD, a finer granularity of configuration error reporting is possible for DCDs by utilizing the
fwWECDFuncsCfgErrors bit-map fidd in the ECD. Thisis achieved by turning the configuration bit
status for the board off and turning the function bit in the fwECDFuncsCfgErrors on for the DCD.

The Acfg BIOS, CM, and Configuration Utility will check both the board configuration status bit and
the ECD configuration errors bit map when resolving configuration errors.

When the Acfg BIOS or the CM is unable to correctly configure one or more of the DCD functions, it
needs to report the fallures with this mechanism.

5.5 Plug and Play ISA devices

The configuration of the Plug and Play I1SA cards is reflected in the sysem by Soring relevant
information in the expansion dots one through fifteen. The dot will contain one or more standard EISA
functions that are followed by one ECD function. The ECD contains both generic and device type
specific information. The Plug and Play ISA card specific information is kept in the ECD_PNPBRDID
structure. This gructure contains the vendor id and the device serial number that are needed for
device identification. This gtructure is part of the PNPFREEFORMFUNC sructure included in the
ECD for the Plug and Play 1SA board.

5.6 PCI Devices

escd.rtf Page 12

ESCD Specification V1.02A

The configuration of PCI devices is reflected in the sysem by storing rdevant information in the virtua
dots numbered 16 through 64. One virtua dot will contain a variable number (one to eight) of standard
EISA functions (describing the resources used by the individuad PCI functions) followed by the ECD
function. The design of the Acfg BIOS and the CM requires that the location of specific PCl devices
be determined. This in turn necessitates the use of the bus number, the device/function number and
the device id, vendor id. This PCl specific informetion is kept in the ECD_PCIBRDID sructure.
Severd ingtances of ECD_PCIBRDID gtructure will be present (one to eight according to the PCI
specification [PCI]), depending on the number of the individud functions that conditute the multi-
function PCI device.

6. ESCD Description
6.1 Difference Between EISA and ISA Systems

The EISA specification defines the layout of the NVRAM for storing the configuration of mother-board
and (E)ISA devices[EISA]. The ESCD extensonsin this environment are limited to the following items
for DCDsonly:

ECD function for DCDs
handling of disabled functions
re-definition of locking
handiing of configuration errors

For EISA systems, the ESCD_BRDHDR and the ESCD_CFGHDR structures are not required and
will not be present. The clients that require access to the EISA NVRAM can use the mechanism
described in the EISA specification [EISA].

In an ISA environment the layout of ESCD conforms to the format described in section 6.2. It requires
that configuration information for each dot be preceded by the ESCD_BRDHDR dgructure. The NVS
will dways contain the ESCD_CFGHDR and the checksum. The ESCD functions, described in section
8, provide uniform access to the NVS. All ESCD extensions are applicable and required in the I1SA
environmen.

6.2 The ESCD format

The ESCD file format closaly resembles the NV S as described by the EISA specification. It contains
the combination of control and configuration data. The resource limitations of EISA configuration data
is dso gpplicable to the ESCD format. The following table is the graphica representation of the
individua data Structures that collectively describe the ESCD for a system that contains a combination
of (E)ISA and DCDs.

Data Structure Description
ESCD _CFGHDR File configuration header
ESCD BRDHDR Header for dlot 1, (E)ISA board

escd.rtf Page 13

ESCD Specification V1.02A

EISA_PackedData Packed datafor the (E)I SA -board
ESCD BRDHDR Header for slot 3, Plug and Play | SA board
EISA_PackedData Packed data for the PnP I SA -card that contains

two functions: 2 std EISA function plus ECD
disabled function plus slot checksum word.

ESCD_BRDHDR Header for Virtual slot 16, single function #0 PCI
device
EISA_PackedData Packed datafor the PCI device, function#0: one

disabled std EISA function plus ECD disabled
function plus slot checksum word.

ESCD_BRDHDR Header for Virtual slot 17, multi-function PCI
board with three non-contiguous functions
EISA_PackedData Packed datafor the PCI board, functions#0, #3

and #5 -- three disabled std EISA format
functions plus ECD disabled function plus slot

checksum WORD.
ESCD BRDHDR Header for slot 0, mother-board
EISA_PackedData Packed data for the mother-board plus slot
checksum word.
CheckSum Two bytes check sum for ESCD file.

The order of the dots in the above table is for illudtration only. The program that uses the data can
determine the dot pogtion by examining the content of the bSotNum field in the ESCD_BRDHDR.
The ECD disabled function for PCI is described by the PCIFREEFORMFUNC structure. The ESD
disabled function for PnP is described by the PNPFREEFORMFUNC dructure. For detailed
decriptions of the individual data structures shown in the above table, refer to the definitions in
Appendix C.

Sot checksum is a 16-bit logical (modulo 64K) sum of ASCII vaues of the EISA_PackedData. ESCD
file checksum is a 16-hit logica (modulo 64K) sum of ASCII valuesin the ESCD file. Sot checksum is
optiondly caculated by the caler. ESCD file checksum must be caculated by the BIOS on a write to
ESCD.

7. Using the CM

A sysem configuration utility can use the CM interface in performing the services offered by the
Configuration Manager. However, caution should be exercised so that lock (or unlock) configuration
requests to CM are not mixed with configuration utility updating of the NVS. The lock/unlock request
to CM results in immediate update of NVS. If the Configuration Utility has a copy of the NVS before
requesting the CM to lock device configuration and then decides to update the NV S itsdlf, the effect of
aCM lock request will be logt.

escd.rtf Page 14

ESCD Specification V1.02A

8. PnP BIOS ESCD Access Interfaces

The Plug and Play BIOS specification defines BIOS interfaces to access system configuration
information. The Plug and Play BIOS will implement three interfaces to obtain information about the
ESCD and read/write of the data. These interfaces follow the function caling prototype of the form

int FAR (*entryPoint)(int Function, ...);

that isfully described in the Plug and Play BIOS specification. System software will interface with dl of
the ESCD functions described in this specification by making afar cdl to this entry point. As noted
above the caller will pass afunction number and a set of arguments based on the function being called.

The extended configuration services are amechanism whereby the system software may lock the system
resource configuration for specific devices by explicitly assgning a configuration to the device. Thiswill
alow the Plug and Play system BIOS to fully configure the system at power up and dlocate the system
resources assigned to the device by the system software. The system resource configuration information
for the devices in the sysem must follow the specified format. The format for maintaining the
configuration informeation in non-volatile storage is the standard EISA packed configuration data block
structure with some necessary extensons. The EISA packed configuration data block is defined in the
EISA Specification [EISA]. The necessary extensons to the EISA format are encompassed in adata
structure referred to as Extended System Configuration Data (ESCD). ESCD is a data structure that is
used to store information about Plug and Play devices that could not be stored in the EISA structures.

It isassumed that adhering to this definition will ensure upward compatibility with current EISA
implementations and device drivers. Refer to Appendix A for more information on the Extended
System Configuration Data (ESCD) format.

The primary purpose of these interfacesisto provide a mechanism for system software to specify the
system resources assigned to the devices in the system, which will enable the sysem BIOS to fully
configure the system at power up.

If necessary, the system BIOS can determine the Size of the datain the ESCD from the ESCD
Configuration Header Structure when required to update and/or modify the contents of the ESCD.
Refer to Appendix A for more information on the format of the ESCD data. Note that the information
passed in the Read and Write Extended System Configuration Data function calls need not be stored
inthe ESCD format. The ESCD structure only refers to the format in which the data is passed between
the Operating System and the System BIOS. The data may be stored in any format the system vendor
chooses.

When acdl is made to the Write Extended System Configuration Data(ESCD) BIOS function, it is
the responsibility of the caler to ensure that the system board device information in Sot O isaso
updated to the device nodes using the Set System Device Node function. Further, the sysem BIOS is
responsible for congtructing the current system board image (namely, Sot O record) from the current
configuration of the System Device Nodes on boot. The presence of Sot O record in ESCD is required.
Further, there is a one-to-one correspondance between the System Device Nodes and the functionsin
Sot 0 record. The enumeration order of the System Device Nodes is used in establishing the
correspondance between the System Device Nodes and functionsin Slot 0.For example, ESCD dot 0

escd.rtf Page 15

ESCD Specification V1.02A

record for a system with 5 device nodes numbered 1, 3, 5, 6, 7 should reflect the device nodes as
functions 1, 2, 3, 4 and 5.

8.1. Function 41h - Get Extended System Configuration Data (ESCD) Information

Synopsis:
int FAR (*entryPoint)(Function, MinESCDWriteSize, ESCDS ze, NVStorageBase, BiosSelector);
int Function; /* PnP BIOSFunction 041h */
unsigned int FAR* MinESCDWriteSi ze; /* Minimum buffer sizein bytes for writing to NVS*/
unsigned int FAR*ESCDSize; [* Sze allocated for the ESCD... */
[* ...within the non-vol atile storage block */
unsigned long FAR * NVStorageBase; /* 32-bit physical base addressfor... */
[* ...memory mapped non-vol atile storage media */
unsigned BiosSelector; /* PnP BlIOSreadable/writable selector */
Description:

This function provides information about the nontvolatile storage on the system that contains the
Extended System Configuration Data (ESCD). It returnsthe sze, in bytes, of the minimum buffer
required for writing to NV S in MinESCDWriteS ze, the maximum size, in bytes, of the block within the
non-volatile storage area dlocated specificaly to the ESCD in ESCDSze, and if the nonvoldile storage
is memory mapped, the 32-bit absolute physica base address will be returned in NVSorageBase. The
physical base address of the memory mapped non-volatile sorage will alow the caler to congtruct a
16-bit data segment descriptor with alimit of at 64K and read/write access. Thiswill enable the Plug
and Play system BIOS to read and write the memory mapped nontvolatile storage in a protected mode
environment. If the non-volatile storage is not memory mapped the vaue returned in NVStorageBase
should be O. It is assumed that the Sze of the non-volatile storage which contains the ESCD will not
exceed 32K bytes.

The portion of non-volatile storage used to store the Extended System Configuration Data (ESCD) may
only be a subset of the total non-volatile storage available on the system. In addition, only the system
BIOS knows where the ESCD resides in the system'’s non-volatile storage and the proper method for
ng the non-volatile sorage. Therefore, the caler should never attempt to directly accessthe
ESCD. System software should utilize the Read Extended System Configuration Data and Write
Extended Configuration Data functions described in this specification.

The BiosSelector parameter enables the system BIOS, if necessary, to update system variablesthat are
contained in the system BIOS memory space. If thisfunction is called from protected mode the caler
must create a data segment descriptor using the 16-bit Protected Mode data segment base address
specified in the Plug and Play Ingtalation Check data structure, alimit of 64k, and the descriptor must
be readable and writable. If thisfunction is cadled from real mode BiosSelector should be st to the
Red Mode 16-bit data segment address as specified in the Plug and Play Ingtalation Check structure.
Refer to section 4.4 in the Plug and Play BIOS specification for more information on the Plug and Play
Ingtalation Check Structure and the dements that make up the structure.

The function is available in rea mode and 16-bit protected mode.

escd.rtf Page 16

ESCD Specification V1.02A

Note that this function may aso be accessible through the INT 1Ah interface. Refer to Intel PnP BIOS
Extensions Design Guide [ACFG] for details.

Returns:

0if successful - SUCCESS
10if an error occurred - error code (The function return codes are described in Appendix D)

The FLAGS and regigters will be preserved, except for AX which contains the return code.
Example:

The following example illugtrates how the 'C' style call interface could be made from an assembly
language module:

push Bios Selector

push segment/sel ector of NV StorageBase ; Pointer to 32-bit physical base address
push offset of NV StorageBase

push segment/selector of ESCDSize ; Pointer to size of ESCD

push offset of ESCDSize

push segment/sel ector MinESCDWriteSize ; Pointer to MinESCDWriteSize block size
push offset of MinESCDWriteSize

push GET_ESCD_SIZE ; Function 041h

call FAR PTR entryPoint

add sp,16 ; Clean up stack

cmp ax,SUCCESS ; Function completed successfully?

jne error ; No-handle error condition

8.2. Function 42h - Read Extended System Configuration Data (ESCD)

Synopsis:
int FAR (*entryPoint)(Function, ESCDBuffer, ESCD Selector, BiosSelector)
int Function; /* PnP BIOSFunction 042h */
char FAR * ESCDBUuffer; /* Address of caller's buffer for storing
ESCD */
unsigned ESCD Selector; /* ESCD readable/writable selector */
unsigned BiosSelector; /* PnP BlIOSreadable/writable selector */
Description:

Thisfunction is used to read the ESCD data from nonvolatile storage on the system into the buffer
gpecified by ESCDBuffer. The entire ESCD will be placed into the buffer. It isthe reponghility of the

escd.rtf Page 17

ESCD Specification V1.02A

cdler to ensure that the buffer is large enough to store the entire ESCD. The cdler should use the
output from Function 41 (the ESCDS ze fidd) when cdculating the Sze of the ESCDBuffer. The
system BIOS will return the entire ESCD, including information about system board devices. The
system board device configuration information will be contained in the dot O portion of the ESCD. The
system BIOS can determine the size of the datain the ESCD from the ESCD Configuration Header
Structure. Refer to Appendix A for more information on the format of the ESCD data.

The ESCDSelector parameter is required when the Get Extended System Configuration Data
Information function has returned a 32-bit absolute physical base address for the non-volatile Sorage
media and this function is going to be caled from protected mode. In thiscasg, it is the responghility of
the caller to congtruct a 16-bit data segment descriptor with base = NVStorageBase, alimit of 64K
and read/write access. In real mode, the ESCDSelector is asegment that points to NVStorageBase. If
the Get Extended System Configuration Data Information function returned O for the 32-bit
physica base address of the non-volatile storage, this parameter should be O.

The BiosSelector parameter enables the system BIOS, if necessary, to update system variables that are
contained in the system BIOS memory pace. |If thisfunctionis called from protected mode the caler
must create a data segment descriptor using the 16-bit Protected Mode data segment base address
gpecified in the Plug and Play Ingtalation Check data structure, alimit of 64K, and the descriptor must
be readable and writable. If thisfunction is called from red mode, BiosSalector should be set to the
Rea Mode 16-bit data segment address as specified in the Plug and Play Ingtalation Check structure.
Refer to section 4.4 in the Plug and Play BIOS specification for more information on the Plug and Play
Ingtdlation Check Structure and the eements that make up the structure.

The function isavailable in red mode and 16-bit protected mode.

Note that this function may aso be accessble through the INT 1Ah interface. Refer to Intel PnP BIOS
Extensions Design Guide [ACFG] for details.

Returns:

0if successful - SUCCESS
10if an error occurred - error code (The function return codes are described in Appendix D)

The FLAGS and registers will be preserved, except for AX which contains the return code.
Example:

The following example illugtrates how the 'C' style call interface could be made from an assembly
language module:

push Bios Selector

push ESCD Sdlector ; ESCD selector if protected mode and NV Sis
; memory mapped, otherwise 0

push segment/selector of ESCDBuUffer ; Pointer to caller's ESCD memory buffer

push offset of ESCDBuffer

push READ_ESCD ; Function 042h

call FAR PTR entryPoint

escd.rtf Page 18

ESCD Specification V1.02A

add sp,10 ; Clean up stack
cmp ax,SUCCESS ; Function completed successfully?
jne error ; No-handle error condition

8.3. Function 43h - Write Extended System Configuration Data (ESCD)

Synopsis:

int FAR (*entryPoint) (Function, ESCDBuffer, ESCD Sel ector, BiosSel ector);

int Function; /* PnP BIOSFunction 043h */

char FAR * ESCDBUuffer; /* Buffer containing complete ESCD to write... */

[* ...to non-volatile storage */

unsigned ESCDSelector; /* ESCD readable/writable selector */

unsigned BiosSel ector; /* PnP BlIOSreadable/writable selector */
Description:

This function will write the Extended Static Configuration Data (ESCD) contained in the ESCDBuffer
to non-volatile storage on the system. The data contained in the cdler's buffer must contain a complete
block of ESCD structures describing the configuration information for devices on the syssem. The
cdler should use the output from Function 41 (the MinESCDWriteSze fidd) when cdculaing the sze
of the ESCDBuffer. Reconfiguration of the system board devices must be handled through Get System
Device Node and Set System Device Node functions as described in Plug and Play BIOS. The system
BIOS can determine the size of the datain the ESCD from the ESCD Configuration Header
Structure within the caller's ESCD buffer. Refer to Appendix A for more information on the format of
the ESCD data.

The ESCDSelector parameter is required when the Get Extended System Configuration Data
Information function has returned a 32-bit absolute physica base address for the non-volatile orage
media and this function is going to be caled from protected mode. It isthe respongbility of the cdler to
construct a 16-bit data segment descriptor with base = NVSorageBase,a limit of 64K and read/write
access. Inrea mode, the ESCDSelector is asegment that points to NVStorageBase. If the Get
Extended System Configuration Data I nformation function returned O for the 32-bit physica base
address of the non-volatile storage, this parameter should be O.

The BiosSelector parameter enables the system BIOS, if necessary, to update system variables that are
contained in the system BIOS memory space. If thisfunction is called from protected mode, the caller
must create a data segment descriptor using the 16-bit Protected Mode data segment base address
gpecified in the Plug and Play Ingtalation Check data structure, alimit of 64K, and the descriptor must
be readable and writable. If thisfunction is called from real mode, BiosSalector should be set to the
Rea Mode 16-bit data segment address as specified in the Plug and Play Ingtalation Check structure.
Refer to Plug and Play BIOS specification (section 4.4) for more information on the Plug and Play
Ingtdlation Check Structure and the eements that make up the structure.

The function isavailable in red mode and 16-bit protected mode.

escd.rtf Page 19

ESCD Specification V1.02A

Note that this function may aso be accessble through the INT 1Ah interface. Refer to Intel PnP BIOS
Extensions Design Guide [ACFG] for details.

Returns:

0if successful - SUCCESS
10if an error occurred - error code (The function return codes are described in Appendix D)

The FLAGS and regigters will be preserved, except for AX which contains the return code.
Example:

The following example illugtrates how the 'C' style call interface could be made from an assembly
language module:

push Bios Selector

push ESCD Sdlector ; ESCD selector if protected mode and NV Sis
; memory mapped, otherwise 0

push segment/selector of ESCDBuUffer ; pointer to ESCD Buffer

push offset of ESCDBuffer

push WRITE_ESCD ; Function 043h

call FAR PTR entryPoint

add sp,10 ; Clean up stack

cmp ax,SUCCESS ; Function completed successfully?

jne error ; No-handle error condition

escd.rtf Page 20

ESCD Specification V1.02A

Appendix A: Extended System Confiquration Data (ESCD)

This gppendix describes the format of non-volatile storage for storing configuration informeation about
the devices ingdled in the system and assumes that the reader is familiar with the EISA data structures
and definitions as specified in the EISA Specification Verson 3.12 from BCPR Services, Inc. Unless
otherwise stated, this document conformsto, and complies with the EISA specification.

ESCD Configuration Header (ESCD_CFGHDR):

Field Offset Length Value
Sze 00h WORD Vaies
Signature 02h DWORD "ACFG" (ASCII)
Minor version number 06h BYTE Vaies
Major version number 07h BYTE 02h
Board count 08h BYTE Varies
Reserved 0%h 3BYTES O's

Size: Specifiesthe size of the ESCD datain non-volatile storage.

Signature: The ASCII string "ACFG" identifies the detaiin the non+volatile storage as Extended
Configuration Data

Minor and Major version: Current verson support. The minor verson number should be greater
than or equa to 0. The mgjor verson number should be set to 2 to indicate Verson 2 of
the ESCD specification.

Board count: Specifies the number of boards in the Extended Configuration Data block.

ESCD Board Header (ESCD_BRDHDR):

Field Offset Length Value
Sze 00h WORD Varies
Slot number 02h BYTE Varies
Reserved 03h BYTE Os

Size: Size of the ESCD board header structure.
Sot number: Identifies the dot the board is plugged into on the system.

Extended Configuration Data Freeform Board Header (ECD_FREEFORMBRDHDR):

Field Offset L ength Value
Signature 00h DWORD "ACFG" (ASCII)
Minor version number 04h BYTE Varies
Major version number 05h BYTE 0zh
Board Type 06h BYTE Varies
Reserved 07h BYTE 0
Disabled Functions 08h WORD Varies
Configuration Error Functions 0Ah WORD Varies
Functions are re-configurable 0Ch WORD Varies

Signature: Identifies the start of the ECD freeform header and should be initidized to "ACFG".

escd.rtf Page 21

ESCD Specification V1.02A

Minor version number: Provides current verson information and should be greeter than or equd
to 0.

Major version number: Provides current verson information and should be set to 2 indicate
Verson 2 of the ESCD specification.

Board type: Identifiesthe type of board and should be one of the following: 1SA=01h, EISA=02h,
PCI=04h, PCM CIA=08h, PNPISA=10h, MCA=20h.

Disabled Functions: Bitmap that specifies the functions that are disabled on the device. For
ingtance, bit 4 is set to a one indicates that function 4 on the device is disabled. Note that
EISA function numbering scheme(i. e, sarting with function number 1) isin effect.

Configuration Error Functions. Bitmap that indicates the function on the device has a
configuration error.

Functionsarere-configurable: Bitmap that indicates which of the functions on the device can be
re-configured by ether the PnP BIOS or the Configuration Manager.

Freeform PCI Device Identifier and Data (ECD_PCIBRDID):

Field Offset L ength Value
Bus number 00h BYTE Varies
PCI device and Function number 01h BYTE Varies
PCI deviceidentifier 02h WORD Varies
PCI vendor identifier 04h WORD Vaies
Reserved 06h 2BYTES O's

Busnumber: Represents the PCI bus number (0-255).
PCI device and Function number: Specifiesthe PCI device and function numbers.
Bits 7:3 - Device number (0-31).
Bits 2:0 - Function number (0-7).
PCI deviceidentifier and PCI vendor identification: Provide the device and vendor
identification for the PCI hardware. Refer to the PCl Specification for more information
about these identifiers.

Freeform Plug and Play | SA Board I dentifier (ECD_PNPBRDI D):

Field Offset Length Value
Vendor identifier 00h DWORD Vaies
Serial number 04h DWORD Vaies

Vendor identifier: Unique 32-bit EISA identifier.

Serial number: Differentiates between multiple cards that have the same vendor
identifier when they are plugged into the system.
Refer to the Plug and Play | SA Specification for more information on the Vendor
|dentifier and Seriad number.

Plug and Play 1 SA Extended Configuration Data (ECD) function (PNPFREEFORM FUNC):
Used asthe last function for a specific Plug and Play 1SA board.

escd.rtf Page 22

ESCD Specification V1.02A

Field Offset Length Value
Function size 00h WORD 28 (1Ch)
Selection size 02h BYTE 01h
Selection data 03h BYTE Q0h
Function information byte: Identifies free format 04h BYTE 0Ch
configuration data block(bit 6) and disabled (bit 7)
Freeformat datasize 05h BYTE 18h
ECD_FREEFORMBRDHDR (see structure 06h 16 BYTES Varies
definition above)
ECD_PNPBRDID (see structure definition above) | 16h 8BYTES Varies

Function sze. Specifiesthe Sze of the structure.

Selection size: Represents the length or number of selection bytes that follow. Thisfield should
beinitidized to O1h.

Selection data: Identifies the functions selected on the board. This fields should be initidized to
00h.

Function information byte: ldentifies this function as an Extended Configuration Data Structure,
This vaue must be set to OCh, bit 6 and bit 7 set, which indicates free form data follows
and the function is disabled.

Freeformat data size: Sze of the free format data thet follows. Thisbyteis not included in the
gzevdue

ECD_FREEFORMBRDHDR: Extended Configuration Data freeform board header. This data
sructure is defined above.

ECD_PNPBRDID: Thisdatastructure specifies the Plug and Play 1SA board identifier and sevid
number. This data structure is defined above.

PCI Extended Configuration Data (ECD) function (PCIFREEFORMFUNC): Used asthe last
function for a specific PCI board.

Field Offset Length Value
Function size 00h WORD Varies
Selection size 02h BYTE 01h
Selection data 03h BYTE 00h
Function information byte: Identifies free format 04h BYTE 0Ch
configuration data block(bit 6) and disabled (bit 7)
Freeformat datasize 05h BYTE Varies
ECD_FREEFORMBRDHDR (see structure 06h 16 BYTES Varies
definition above)
ECD_PCIBRDID (see structure definition above). 16h 8to 64 Varies
Array of 1 to 8 structures for multi-function PCI BYTES
boards.

Function size: Specifiesthe sze of the structure.

Selection size: Represents the length or number of selection bytes that follow. Thisfied should
beinitidized to 1.

Selection data: Identifies the functions sdlected on the board. Thisfieds should beinitidized to O.

escd.rtf Page 23

ESCD Specification V1.02A

Function information byte: Identifies this function as an Extended Configuration Data structure.
Thisvaue must be set to OCh, bit 6 and bit 7 set, which indicates free form data follows
and the function is disabled.

Freeformat data size: Sze of the free format data that follows. This byteis not included in the
szevdue. Depending on the number of PCI board identifier (ECD_PCIBRDID) data
sructures, the free format data size can be from 24 bytes long up to a maximum vaue of
80 bytes.

ECD_FREEFORMBRDHDR: Extended Configuration Data freeform board header. Thisdata
sructure is defined above.

ECD_PCIBRDID: Thisdata sructure specifiesthe PCl board identifier. Thisfield is specified as
an array of sructures in which there will be only one entry for each function on a multi-
function PCI board. This data structure is defined above. There can befrom 1to 8
structures specified here.

escd.rtf Page 24

ESCD Specification V1.02A

Appendix B State Table for DCD Configuration

The purpose of this Appendix is to explain the corrdation of dl the possble sates of a DCD function
with the states of the following ESCD fidds EISA device lock bit, EISA function disable bit, and the
ECD fwECDFuncsDisabled bit.

From auser's perspective a DCD function can be in one of only three states.
S1. The DCD function is active and is fully re-configurable.
S2. The DCD function is dissbled.
S3. The DCD function is active and its configuration resources are locked.

The [EISA] specification defines a disable bit for each function and a lock bit for the entire device. As
described in section 5 of this document, the EISA function disable bit is used to control re-configuration
of DCDs in legacy ECUs. In order to provide the disable functiondity (that was originaly provided by
the EISA function disable bit), the ECD defines the fwECDFuncsDisabled hit-map to indicate which
DCD functions are disabled. The combinations of these three fidlds result in eight possible states not dl
of which arevdid.

Before describing the eight states, we must ensure that the three fields are consistent with each other. If
the fwECDFuncsDisabled bit is 1 (i.e, the function is truly disabled) the states of the device lock bit
and the EISA function enable bits can be ignored in new ECUs. However, since the legacy ECUs do
not have access to the fwECDFuncsDisabled bit, the CM or the ACFG BIOS needs to set the States
of the device lock bit and the EISA function disable bit such that the legacy ECU interprets the fields
correctly.

The correctness criteria are defined by the following rules:

1) If the fwECDFuncsDisabled bit is 1, then the corresponding EISA function disable bit should
be forced to 1. If the EISA function disable bit is O (i.e, the legacy ECU interprets the function to
be enabled), the legacy ECU will not alocate the resources for that function to other devices. Thisis
an incorrect scenario because the function is truly disabled and is not using any resources tha are
described inits EISA function.

2) If all the functions for a device do not have their EISA function disable bit set, then the
device lock bit should not be changed fromits current state. The rule mentioned above changes
the gtate of the EISA function dissble bit for one function. This rule specifies the follow-up action for
the device lock hit. It says that if there are any enabled functions in the device, the Satus of the lock
bit should remain unchanged. In other words, if by disabling a function (as aresult of rule 1 above),
it turns out that al the functions of the device are disabled, then the lock bit can be reset. It is
possible that some legacy ECUs ignore the lock bit if al the functionsin that device are disabled, but
this specification now requires that this bit be turned off to ensure condstency across dl
implementations. The resulting interpretation of the device lock bit isthat thelock bit is st if at least
one function in that deviceis not re-configuradle.

3) Thedevice lock bit in conjunction with the EISA function disable bit defines the locked status
of the function. If the device lock hit is set, then the lock datus of the function is derived from the

escd.rtf Page 25

ESCD Specification

V1.02A

datus of the EISA function disable hit, i.e, if the EISA function disable bit is O then the function is
locked (its resources cannot be re-configured) and if the bit is 1 then the function is unlocked (its
resources can be re-configured). If the device lock bit is reset, the only vaid sateisfor the function
to be fully re-configurable (i.e., the EISA function disable bit should be 1).

The CM or the ACFG BIOS will dways modify the states of the three fidds if they do not conform to
these correctness criteria. We thus arrive a the following State table:

Device EISA ECD
function
lock disable | disable Description
bit bit bit

0 0 0 Invalid state because of rule 3). The CM or the ACFG BIOS will
correct this by changing the device lock bit to 1.

0 0 1 Invalid state because of rule 1). The CM or the ACFG BIOS will
correct this by changing the EISA function disableto 1.

0 1 0 S1; This is the normal state for DCD. This device can be fully re-
configured as needed.

0 1 1 S2; The DCD function is disabled and will not be configured by
ACFGBIOS or the CM.

1 0 0 S3; This DCD haslocked resources.

1 0 1 Invalid state because of rule 1). The CM or the ACFG BIOS will
correct this by changing the EISA function disable bit to 1. Following
rule 2) the device lock bit may be changed to 0 depending on the
status of other functionsin the device.

1 1 0 S1; The status of the device lock bit is valid only if there are other
functions in this device that have their EISA function disable bit set
to 0. If this is not the case then this state is invalid and will be
corrected by the ACFG BIOS or the CM according to rle 2). The
function whose EISA disable bit is shown in the state table here is
fully re-configurable.

1 1 1 S2; The status of the device lock bit isvalid only if thereis at least
one other function in this device that has its EISA function disable
bit set to 0. If that is not the case then this state isinvalid and will be
corrected according to rule 2) by ACFG BIOS or the CM.

escd.rtf Page 26

ESCD Specification V1.02A

Appendix C Detailed ESCD Data Structure Specification

/***
NAME
escdfmt.h (Extended Static Configuration Data)
PURPOSE
Defines the structures needed to access the ESCD
NOTES

1. Thedefinitions here reflect additions to the packed Eisaformat strucures. ESCD will be used to store
configuration information both on ISA and EISA systems.

2. ESCD definitiondiffers slightly for ISA and EISA systems (refer to the ESCD documentation). |SA systems
do not have anotion of slots. The byte reserved for slot number in the ESCD (for ISA systems) is used to
create the abstraction of slots.

3. Slot numbers 16-64 are referred to as Virtual Slots. Any peripheral, device or software that needs a
configuration file and is not covered by other device types can be specified asavirtual device.

4. Configuration information for PCI devicesin an (E)ISA system, isstored in virtual slots.

5. Configuration information for PnP ISA devicesin an (E)ISA system, is stored in slots one thru 15.

6. Theslot zero has special meaning and is reserved for motherboard configuration.

7. ltisagoal to use DCDswith old ECUs and achieve some amount of reconfigurability. Thisis achieved by
using the function enable/disable bit for slightly different purpose. Refer to the ESCD documentation for
more detailed description.

8. PnPISA and PCI devices have device specific information that cannot be completly represented by the

EISA structures. For these devices only, this additional information will be stored in an EISA FreeFormat
function that is alway disabled and is always the last function in the slot record.

9. ESCD file checksum isa 16-bit logical (modulo 64K) sum of ASCII valuesin the ESCD file. ESCD file checksum

must be calculated by the BIOS on awriteto ESCD.

HISTORY:

Version 0.15, created June 1993.
Version 0.16, updated July 15 1993.
Version 0.99, updated July 22 1993.
Version 0.99a,updated August 10 1993.
Version 1.00, updated October 1 1993.
Version 1.02, updated February 14 1994,
Version 1.02A, updated May 1994.

* % */

#ifndef _ESCD
#define _ESCD
#ifndef BYTE

typedef unsigned char BYTE;
typedef unsigned short WORD;
typedef unsigned long DWORD;
typedef long LONG;

#endif

/* end of datatypes*/

/***

Standard EISA format definitions

***/

escd.rtf

Page 27

ESCD Specification

V1.02A

/* Bytes#0 and #1 of 1D and Slot Information */

typedef struct
{

BYTE bDupCFGNumid :4;

BYTE bSlotType

BYTE blIDReadable

BYTE bDuplDPresent

2

1

1

BY TE bBrdEISAEnableSupp: 1;

BY TE bBrdlochker
BYTE bBrdOrEntryLck
BYTE bldSlotResvrd
BY TE bldSotNoCfgFile
BY TE bBrdConfgStat

} EISAIDSLOTINFO;

PRORER

/*Byte#0: Bits0-3 Numericid for duplicate CFG filenames

0000 - No duplicate CFG filenames
0001 - 1st duplicate(1ACE0105)

1111 - 15th duplicate(FACEQ105) */

/* Byte#0: Bits4-5
00 - Expansion Slot
01 - embedded slot
10- virtual slot
11 - reserved(0) */
/* Byte#0: Bit 6
0- 1D reabable
1- 1D not reabable */
/* Byte#0: Bit7
0- no duplicate ID present
1-duplicate ID present */

/* Byte#1: Bit0-
[* Byte#1: Bit1-
/* Byte#1: Bit 2 -

board can bedisabled =1 */
IOCHKERR supported =1 */
board or entries locked = 1 */

[* Byte# 1: Bit 3-5-reserved */

[* Byte# 1: Bit 6 - Board doesn't have/need cfg file=1*/
[* Byte#1: Bit 7 -

/*

configiscompleted =0 */
- configisnot completed=1*/

/* Function Information Byte #0 */

typedef struct
{
BY TE bTypeSubTypeEntry
BY TE bMemoryEntry
BYTE blrgEntry 1
BYTE bDmaEntry
BY TE bPortRangeEntry
BY TE bPortlnitEntry
BY TE bFreeFormEntry
BY TE bEISAFuncDisabled
} EISAFRUNCENTRYINFO;

1 /* Bit 0 - type subtype data=1*/
1 /* Bit1- mementry data=1*/

/* Bit2-IRQdata=1*/

1 /* Bit 3- DMA entry data=1*/

L [* Bit4- port rangedata=1*/

1 /* Bit5-portinit data=1*/

'L /* Bit 6 - freeform data=1*/

11, /*Bit7-enabled=0, disabled=1*/

/* Memory Info struct Bytes #0-6 */

typedef struct

{
BY TE bMemRdWr
BYTE bMemCached
BYTE bMemChType
BYTE bMemType
BYTE bMemShared
BYTE bMemReservedl

PR RR

01

/* Bit0-0=ROM, 1=RAM */
/* Bit 1 - 0 = not cached */
/* Bit 2 -1 =WB cache, 0=WT cache */

[* Bits3-4-00=sys, 01=exp, 10=vir,11=cth */

/* Bit5- 0 not=shared */
/* Bit6-0=reserved */

BYTE bMemMoreEntries : 1; /* Bit7 - lastentry =0, more=1*/

/* Mem data size byte*/
BYTE bMemDataSize

2

[* Bit 0-1-00=byte,01=word,10=dwrd,11=rsv*/

escd.rtf

Page 28

ESCD Specification

V1.02A

BYTE bMemDecodeSize 2, [* Bit 2-3-00=20,01=24,10=32,11=rsv*/
BY TE bMemReserved2 14, [* Bit4-7-0=reserved*/

/* memory start addr */
BY TE bMemStartAddrO; /* LSByte (divided by 0x100) mem start */
BYTE bMemStartAddrl, /* Middle Byte memory start */
BYTE bMemStartAddrz; /* MSByte memory start */

/* memory size*/
BYTE bMemSize0; [* LSByte (divided by 0x400) mem size*/
BYTE bMemSizel, [* LSByte=M SByte=0 means 64MB */

} EISAMEMORYINFO;

/* IRQ Info struct Bytes #0-1 */
typedef struct

{
BY TE blrgNumber 4 /* Bit 0-3 - IRQ Number */
BYTE blrgRsvrd 1 /* Bit4-must be0*/
BYTE birqTrigger 1 /* Bit5- 0=Edge, 1=Leve */
BYTEbIrqType 1 [* Bit 6 - 0=Non-shared, 1=Sharable */
BYTE blrgMoreEntries 1 [* Bit 7 - O=Last Entry, 1=More entires follow */
BY TE blrgReserved; /* Reserved (setto 0) */

} EISAIRQINFO;

/* DMA Info struct Bytes#0-1 */
typedef struct

{
BY TE bDmaNumber 3 /* Bits0-2- DMA Number(0-7) */
BY TE bDmaReservedl 3 /* Bits 3-5 Reserved (set to 0) */
BYTE bDmaType 1 /* Bit 6 - 0=Non-Sharable, 1=Sharable */
BY TE bDmaMoreEntries :1; [* Bit 7 - O=Last Entry, 1=more entiresfollow */
BY TE bDmaReserved2 2, /* Bit 0-1 Reserved (set to 0) */
BYTE bDmaTransferSize :2; [* Bits 2-3
00 = 8hit transfer
01 = 16bit transfer
10 = 32hit transfer
11 = 16hit transfer with byte count */
BYTE bDmaTiming 2, [* Bits4-5
00 = Isa Compatible timing
01=Type"A"
10=Type"B"
11 =Type"C"(Burst) */
BYTE bDmaReserved3 2, /* Bits6-7 Reserved (set to 0) */

} EISADMAINFO;

/* 1/0 ports Info struct Bytes #0-2 */
typedef struct

{
BY TE bPortCount 5 /* Bit 0-4 Number of Ports
0000 = 1Port
0001 = 2Sequential Ports (and so on)
1111 = 32Sequential Ports*/
BY TE bPortRsvrd 1 /* Bit 5 Reserved (set to 0) */
BY TE bPortShared 1 /* Bit 6 0=Non-shared, 1=Sharable */
escd.rtf Page 29

ESCD Specification V1.02A

BY TE bPortMoreEntries 1 [* Bit 7 - O=Last Entry, 1=More entiresfollow */

WORD wPortAddr; /* 1/O Port Address */
} EISAPORTINFO;

/* Init ports Info struct Bytes #0-2 */
typedef struct
{
BYTE bAccessType 2, /* Bit0-1
00 - Byte address(8-hit)
01 - Word address(16-bit)
10 - Dword address(32-hit)
11 - Reserved(0) */
BY TE bPortMaskSet L [* Bit2
0- Write value to Port(no mask)
1- Usemask and value */
BY TE blnitReserved 4 /* Reserved(0) */
BY TE bMoreEntries 1 /* 0= Last Entry
1=Moreentriesfollow */
} EISAINITDATA,;

/* EISA freeformat datadefinition */
typedef struct
{
BYTE bDataSize; /* Length of following data block */
BYTE abDatg[203]; [* 203 bytes*/
} EISAFREEFORMDATA,;

/* eisaslot function config 320 bytes structure layout definition */
typedef struct

{
BYTE bCompBrdID1; [* first byte of compressed board ID */
BYTE bCompBrdID2; /* second byte of compressed board ID */
BYTE bCompBrdID3; /* third byte of compressed board ID */
BYTE bCompBrdID4; /* forth byte of compressed board ID */
EISAIDSLOTINFO slDSlotInfo; /* bit specific dlot ID and slot info */
BYTE bCFGMinorRevNum,; /* minor revision of CFG file extension*/
BYTE bCFGMgorRevNum; /* major revision of CFG file extension*/
BYTE abSelectiong[26]; [* 26 bytes of selection information */
EISAFUNCENTRYINFO sFuncEntryinfo; /* Func status and resources stat */
BYTE abTypeSubType[80]; /* 80 character type/subtypefield */
union
{
struct
{
EISAMEMORYINFO asMemData[9]; /* 63 bytesmem cfg data*/
EISAIRQINFO aslrqData[7]; /* 14 bytes IRQ config data */
EISADMAINFO asDmaData[4]; /* 8 bytesDMA channel info */
EISAPORTINFO asPortData[20]; /* 60 bytes|/O port info */
BYTE ablnitData[60]; /* 60 bytesinit. data*/
} sResData;
EISAFREEFORMDATA SsFFData; /* Freeformat data*/
} uFuncData;

escd.rtf Page 30

ESCD Specification V1.02A

} EISAFUNCCFGINFO;

/***

End of Standard EISA format definitions

***/

/***/

/***/

/* Layout of the whole storage for the ESCD.img file */
/*
1) Escd CFGHDR. Thiscontainsthe ESCD size, sighature, version#, and the number of slot entries.
2) Thisisfollowed by board records that contain a board header and board data. Board header contains the
size of the board record and the slot number for the board. The board header is specific to | SA systems
only.
3) The packed datafor each slot is preceeded by ESCDBrdHdr that contains the size and the slot# for the slot
datathat immediately follows.
4) EISA format datafor slot zero, the Mother-board: datafor functions 0-n describing M B resources
5) EISA datafor slots 1-15 describe EXP EISA and ISA boards: datain standard format for functions 0-n
corresponding to devices associated with the expansion boards.
6) ESCD datafor slots 1-15 describing the PnP | SA boards:
datafor functions 0-n corresponding to devices on the expansion board. Unlocked PnP I SA devices
are described as disabled functions; locked PnP devices on the board are enabled functions.
disbled function n+1 describing extentions specific to PnP board type. The data uses free format spec.

7) ESCD datafor slots 16-64 (Virtual slots) describe the PCI devices, one PCI board (device) per one slot:
one or more standard EISA function(s) corresponding to the PCI function(s) 0-7 for the PCI device that
islocated at Bus#,Dev# and Fun#0 addressin the system. If the configuration for this deviceis
unlocked, the standard EISA format function(s) will be disabled; locked PCI function(s)will be enabled.
alast function, the ECD describing the PCI specific information for the PCI function(s) 0-7.

8) Thereisachecksum at the end of the storage.

*/

/***/

/* The following structures describe the ESCD extensions. */

typedef struct

{
WORD WEScdSize; [* Total Size of File/NVRAM */
DWORD dSignature; [* Initialized to "ACFG" */
BYTE bVerMinor; /* Minor #, should be >=0*/
BYTE bVerMagor; /* Major #, should be >=2*/
BYTE bBrdCnt;
BYTE abEscdHdrReserved[3];

} ESCD_CFGHDR;

typedef struct

{
WORD wBrdRecSize; /* Including thisword */
BYTE bSlotNum;
BYTE bEscdBHdrReserved;

} ESCD_BRDHDR;

#define ESCD_SIGNATURE Ox47464341 /* ACFG characters*/

escd.rtf Page 31

ESCD Specification V1.02A

/* Freeformat last funct Board Header ecd extensions */
typedef struct

{
[* Total size of 16 bytes*/

DWORD dSignature; [* Initialized to "ACFG" */
BYTE bVerMinor; /* should be >= 00 */
BYTE bVerMagor; /* Must be set to 0x02 */
BYTE bBrdType; /* Board Type asin CM defintion */

/* 0x01=isa, Ox02=eisa, Ox04=pci */

/* 0x08=pcmcia, 0x10=PnP |sa, 0x20=mca*/
BYTE bEcdHdrReservedl; /* Reserved */
WORD fwECDFuncsDisabled; /* 16 PnP functions disabled bit-map */
WORD fwECDFuncsCfgError; /* 16 PnP functions config error status bit-map */
/* Thisreserved field will now beused BYTE abEcdHdrReserved2[4]; Reserved */
WORD fwECDFuncsCannotConfig; /* 16 PnP funct bit-map to indicate *

/* if the deviceisreconfigurable*/
/* For each bit 0 - Reconfigurable 1- Not reconfigurable */
BYTE abEcdHdrReserved[2]; /* Reserved */
} ECD_FREEFORMBRDHDR,;

/* Free Fmt PCI device identifier and data*/
typedef struct

{
BYTE bBusNum; /* PCl Bus Number (0-255) */
BYTE bDevFuncNum; /* PCI defined Device (0-31) and Func 0-7) Number */
/* Device#in bits 7:3, Function #in bits 2:0 */
WORD wDeviceld; /* PCI deviceID */
WORD wVendorld; /* PCI vendor ID */
BYTE abPciBrdReserved[2]; /* Reserved */

} ECD_PCIBRDID;

/* Free Fmt PnP | SA board identifier */
typedef struct
{
DWORD dVendorld; /* PnP 1SA vendor ID, 4 char */
DWORD dPnPSeria Num; /* Board/Device serial # identifier */
} ECD_PNPBRDID;

/* PnP ISA ECD extention function, alast function per board */
typedef struct

{
WORD wFuncSize; [* Size setto 28 */
BYTE bSelectionSize; [* initializeto 1 */
BYTE bSelectionData; [* initializeto 0 */
BYTE bFuncinfo; /* FreeFormat, disabled bit set (set to 0xCO0) */
BYTE bFreeFormSize; /* Size of following free fmt data, excl this byte Size set to 24: sizeof

ECD_FREEFORMBRDHDR + PnP specific data*/
ECD_FREEFORMBRDHDR sFFBrdHdr; /* sizeof struct = 16 bytes */
ECD_PNPBRDID sPnPBrdid; /* sizeof struct =8 bytes*/

} PNPFREEFORMFUNC;

escd.rtf Page 32

ESCD Specification

V1.02A

/* PCI ECD extention function, alast function per board/device */

typedef struct

{
WORD wFuncSize;
BYTE bSelectionSize;
BYTE bSelectionData;
BYTE bFunclinfo;
BYTE bFreeFormSize;

ECD_FREEFORMBRDHDR sFFBrdHdr;
ECD_PCIBRDID sPCIBrdid[8];

} PCIFREEFORMFUNC;

I* End of the ECD extensions.

/* set to min of 28 for single PCI function */

/* and to 86 for eight functions PCI card */

[* initializeto 1 */

[* initializeto 0 */

/* FreeFormat, disabled bit set (set to 0xCO0) */

[* Size of following free fmt data, excl this byte
Size set to max of 80: sizeof ECD_FREEFORMBRDHDR
+ PnP specific data alowed intry is24 or 32 or 40.. 80 */

[* sizeof struct = 16 bytes*/

/* sizeof struct = Maximum of 8*8 bytes*/

/* Therewill be only one sPCIBrdld entry for each function on
amulti-function PCI card */

*/

/***/

#endif
/* end of _ESCD definition */

escd.rtf

Page 33

ESCD Specification V1.02A

Appendix D ESCD Access Functions Return Codes

The following table defines the return codes for the Plug and Play BIOS functions dedling with ESCD
access.

Return Code Value Description

SUCCESS Q0h Function completed successfully

FUNCTION_NOT SUPPORTED 8lh The function is not supported on this system.

ESCD_I0_ERROR_READING 55h The system BIOS could not read or write the Extended
System Configuration Data (ESCD) from nonvolitale
storage

ESCD_INVALID 56h The system does not have avalid Extended System
Configuration Data (ESCD) in nonvolitale storage.

ESCD_BUFFER_TOO_SMALL 59h The memory buffer passed in by the caller was not
large enough to hold the data to be returned by the
system BIOS.

ESCD_NVRAM_TOO_SMALL 5Ah All of the ESCD cannot be stored in the NVRAM
storage available on this system.

escd.rtf Page 34

