
Copyright  1993 Compaq Computer Corp., Intel Corp., and Phoenix Technologies, Ltd.

Part Number 485547-001

Compaq Computer Corporation

Intel Corporation

Phoenix Technologies, Ltd.

EXTENDED SYSTEM CONFIGURATION DATA

SPECIFICATION

Version 1.02A

May 31, 1994

This specification is, and shall remain, the property of Compaq Computer Corporation ("Compaq")
Phoenix Technologies LTD ("Phoenix") and Intel corporation ("Intel").

NEITHER COMPAQ, PHOENIX NOR INTEL MAKE ANY REPRESENTATION OR
WARRANTY REGARDING THIS SPECIFICATION OR ANY PRODUCT OR ITEM
DEVELOPED BASED ON THIS SPECIFICATION. USE OF THIS SPECIFICATION FOR
ANY PURPOSE IS AT THE RISK OF THE PERSON OR ENTITY USING IT. COMPAQ,
PHOENIX AND INTEL DISCLAIM ALL EXPRESS AND IMPLIED WARRANTIES,
INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND FREEDOM
FROM INFRINGEMENT. WITHOUT LIMITING THE GENERALITY OF THE
FOREGOING, NEITHER COMPAQ, PHOENIX NOR INTEL MAKE ANY WARRANTY
OF ANY KIND THAT ANY ITEM DEVELOPED BASED ON THIS SPECIFICATION, OR
ANY PORTION OF IT, WILL NOT INFRINGE ANY COPYRIGHT, PATENT, TRADE
SECRET OR OTHER INTELLECTUAL PROPERTY RIGHT OF ANY PERSON OR
ENTITY IN ANY COUNTRY.

ESCD Specification V1.02A

escd.rtf Page 2

Revision History

Issue Date Comments

October 5, 1993 Preliminary - version 1.00

December 28, 1993 Changed reserved field in the ECD_FREEBRDHDR to indicate if
the PnP ISA or PCI device is re-configurable by the PnP BIOS.
Version 1.01

February 14, 1994 Clarification of CannotConfig bit - Version 1.02

May 31, 1994 Clarification of System Device Node interface - Version 1.02A

ESCD Specification V1.02A

escd.rtf Page 3

Table of Contents

Revision History...2

1. Introduction...5

1.1 Purpose ...5

1.2 Related Documents ..6

1.3 Terms and Abbreviations..6

2. Concepts ...7

2.1 Assumptions ..7

2.2 Slot Records Without 'cfg' Files..7

3. Slot Assignment ...8

3.1 Motherboard ...8

3.2 Expansion Slots..8

3.3 Virtual Slots ...8

4. Storing of DCD Information...8

5. Reconfiguration of DCDs ...10

5.1 Re-configurability with Legacy ECUs..10

5.2 Implementing Disabled DCD Functions...11

5.3 Implementing Locked DCD Functions ..11

5.4 DCD Configuration Errors..12

5.5 Plug and Play ISA devices..12

5.6 PCI Devices ..12

6. ESCD Description...13

6.1 Difference Between EISA and ISA Systems ...13

6.2 The ESCD format ..13

7. Using the CM..14

8. PnP BIOS ESCD Access Interfaces...14

8.1. Function 41h - Get Extended System Configuration Data (ESCD) Information15

8.2. Function 42h - Read Extended System Configuration Data (ESCD)................17

8.3. Function 43h - Write Extended System Configuration Data (ESCD)................18

Appendix A: Extended System Configuration Data (ESCD)...21

Appendix B State Table for DCD Configuration..25

ESCD Specification V1.02A

escd.rtf Page 4

Appendix C Detailed ESCD Data Structure Specification..27

Appendix D ESCD Access Functions Return Codes..34

ESCD Specification V1.02A

escd.rtf Page 5

1. Introduction
In order to support the automatic configuration of plug and play devices (e.g., PCI, Plug and Play ISA)
on platforms that include a standard expansion bus (e.g., ISA, EISA), non-volatile storage is required to
store information about the system resources (i.e., IRQ, I/O port, memory window, DMA channel)
used by non-plug and play devices. The Plug and Play BIOS Specification [P&PBIOS] describes two
techniques for storing this information. For low end systems that have very little available non-volatile
storage, the information maintained in non-volatile storage is limited to describing the combined set of
resources allocated to non-plug and play devices. This information can be stored in compact coded bit
strings. The Plug and Play BIOS Specification describes two interfaces to read and write this
information, functions 09h and 0Ah (Set and Get Statically Allocated Resource Information). The
information provided through these interfaces is sufficient to allow for the full autoconfiguration of plug
and play devices with platforms running plug and play operating systems. Platforms with non-plug and
play operating systems or employing add-on plug and play support (e.g., Plug and Play Kit for MS-
DOS* and Windows*), may not be able to automatically configure all plug and play devices in all cases.
For support of these systems, it is recommended that the Extended System Configuration Data (ESCD)
format be employed to store configuration information in non-volatile storage.

The ESCD structure format allows the storage of detailed configuration information on a per device
basis rather than the combined configuration storage described in the preceding paragraph. In addition,
the ESCD format accommodates storage of configuration information for plug and play devices. The
storage of the detailed configuration information allows the BIOS configuration software to work
together with configuration utilities to provide robust support for non-plug and play as well as plug and
play devices. The detailed configuration information for non-plug and play devices can be used by
configuration utilities (e.g., ISA Configuration Utility in the Plug and Play Kit for MS-DOS and
Windows) to provide users with a detailed display of system configuration as well as the ability to
perform robust resource balancing when adding new cards. The configuration information for plug and
play devices is used to either store information about the last working configuration for the device or
indicate that the configuration for a plug and play device should be locked, allowing the card to always
be configured to the same settings. The former capability allows the robust resource balancing
performed by configuration utilities to be employed in the configuration of plug and play devices. The
latter capability allows plug and play devices to be automatically configured for systems running non-
plug and play devices.

1.1 Purpose

This document is intended to provide sufficient information to system software developers to enable
them to utilize the configuration information about Dynamically Configurable Devices (DCDs) for
successful configuration of a system. Two varieties of DCDs are considered in this document: PCI
devices and Plug and Play ISA devices.

This document describes the format of non-volatile storage for configuration (and re-configuration) of
DCDs. The following sections address these topics:

* MS-DOS is a registered trademark and Windows is a trademark of Microsoft Corporation.

ESCD Specification V1.02A

escd.rtf Page 6

• concepts and terminology

• configuration of Plug and Play resources in the Extended Configuration Data (ECD)

• mechanism for locking a single function in a DCD

• mechanism for disabling a single function in a DCD

• primitives to indicate failures while configuring a single function in a DCD

• data formats that are used to store the Plug and Play device status information.

The first design goal was to use, whenever possible, the existing definition of EISA data format as
defined in the EISA Specification [EISA]. By adhering to this definition and providing only the
necessary extensions, we are assured of upward compatibility with the current implementations of the
EISA Configuration Utility (ECU) and device drivers. The second goal was to extend this design to ISA
systems so that a common Plug and Play implementation can be provided.

1.2 Related Documents

The following is a list of references containing information that is relevant to the discussion in this
document:

[EISA] EISA Specification, Version 3.12, BCPR Services.

[PCI] PCI Local Bus Specification, Revision 2.1, PCI Special Interest Group.

[P&PBIOS] Plug and Play BIOS Specification, Version 1.0a, Compaq Corp., Intel Corp., and
Phoenix Technologies, Ltd.

[PnPISA] Plug and Play ISA Specification, Version 1.0a, Intel Corp. and Microsoft Corp.

[DDI] Plug and Play Device Driver Interface for Microsoft Windows 3.1 and MS-DOS,
Version 1.0c, Microsoft Corporation.

[ACFG] Plug and Play BIOS Extensions Design Guide, Revision 1.2, Intel Corp.

1.3 Terms and Abbreviations

Acfg BIOS Auto-Configuration BIOS. System BIOS that contains Intel's Plug and Play BIOS
extensions to configure DCDs as required.

CM Configuration Manager. DOS driver that is responsible for configuring DCDs that are
not configured by the Acfg BIOS. It provides access to the configuration space (as
defined in [DDI]) for devices present in the system.

DCD Dynamically Configurable Device. A device whose configuration can be changed (i.e.,
its resources can be relocated) dynamically. In this document we consider two instances
of DCDs: Plug and Play ISA devices and PCI devices.

Disabled DCD A DCD is disabled when the resources that are currently in use by the DCD are
released and its functionality is no longer available to the user.

ESCD Specification V1.02A

escd.rtf Page 7

ECD Extended Configuration Data. ECD is a data structure that is used to store information
about DCDs that could not be stored in the EISA structures.

Enabled DCD A DCD is enabled when it is using system resources.

ESCD Extended System Configuration Data. ESCD is the data format for storing resource
information describing (E)ISA devices and DCDs.

Locked DCD A locked DCD is a DCD whose resources cannot be dynamically re-configured. The
DCD is bound to its current resources until the lock is released.

NVS Non-Volatile Storage. NVS is the place where the ESCD is stored. It could be either
an NVRAM (in EISA systems and in many ISA systems) or a data file (in legacy ISA
systems). The storage media is implementation dependent.

Slot A slot is a position in the system where a board is inserted. ESCD defines a slot record
as a data structure that stores resource information for the device occupying that slot. In
ISA systems a slot is merely an identifier used to provide the abstraction of physical
slot. Slot zero is reserved for the Motherboard and slots 16 through 64 are reserved for
virtual devices.

Virtual Device A device that is not associated with a specific physical slot. Information about virtual
devices is kept in virtual slots.

2. Concepts
2.1 Assumptions

This document assumes that the reader is familiar with the EISA structures and definitions as specified in
the EISA Specification [EISA]. Unless otherwise stated, this document conforms to, and complies with
the EISA specification. This document further assumes that the reader is familiar with the configuration
of DCDs as described in [PCI] and [PnPISA].

This document frequently uses the terms function and device. When the term device is used, it
represents the physical hardware. A single device and its configuration resources are translated into a
single function. This document also uses the terminology card and board. Both of these terms are
synonymous with the term device. On PCI systems, the terms device and function are used to identify
the location of a specific PCI device such as IDE, SCSI, etc. A function as defined in the EISA
specification [EISA] and ESCD is an entity that describes resources and information about devices. A
device can have several functions. For example, a Plug and Play ISA device can have two functions,
with each function using resources independently. It is also possible that a device has a single function.

2.2 Slot Records Without 'cfg' Files

The EISA specification [EISA], specifies that board and slot id configuration information is kept in bytes
zero and one of the ID and slot information field. Byte one of this field contains four reserved bits
numbered three to six. The ESCD specification redefines the bit six of byte one in the ID and slot
information field from reserved bit to bIdSlotNoCfgFile bit. This bit will be set to one when the slot
board record is created by the Configuration Manager or the system ACFG BIOS. When set, this bit

ESCD Specification V1.02A

escd.rtf Page 8

should be interpreted to mean that this slot record was auto-configured and therefore doesn't require
any configuration files for determining the device configuration possibilities. This new
bIdSlotNoCfgFile bit is defined in the EISAIDSLOTINFO structure in the escdfmt.h (see attached
Appendix C).

It is the responsibility of the Configuration Utilities to correctly interpret this bit and when set, not make
requests for configuration files.

3. Slot Assignment
This section describes the locations where resource information for different device types will be stored
in ESCD.

3.1 Motherboard

As defined in the EISA specification, mother-board configuration information is always stored in slot
zero as multiple functions that loosely correspond to the actual ISA devices that are embedded in the
motherboard. The ESCD specification requires that only the ISA devices embedded in the
motherboard be described as mother-board functions. As described in section 5.6, PCI device
information is always stored in virtual slots. This means that for systems that contain PCI devices
embedded in the motherboard (such as IDE and or SCSI) and are attached to the PCI bus, the virtual
slots will be used to store the PCI-specific configuration information for the motherboard (while
retaining the ISA configuration information in slot zero).

The Acfg BIOS uses BrdConfgStat, i.e., bit 7 in byte 1 of ID and slot information field for slot zero
(refer to [EISA]), to indicate information inconsistency for motherboard devices. When the Acfg BIOS
detects inconsistency between the Setup CMOS and NVS for motherboard data, BrdConfgStat will
be set to one. It is the responsibility of the Configuration Utility to correctly interpret this bit and take the
appropriate action.

3.2 Expansion Slots

Expansion slots are defined as slot numbers 1 through 15 [EISA]. The configuration information for the
current generation of (E)ISA devices is stored in expansion slots. Expansion slots are also used to store
information about Plug and Play ISA devices. Since the Plug and Play ISA devices are dynamically re-
configurable, the ESCD uses the ECD to capture the additional information that needs to be stored.
Section 4 and Appendix A describe ECD in greater detail.

3.3 Virtual Slots

Virtual slots are defined as slot numbers 16 through 64 [EISA]. These are reserved for configuration
information for virtual devices. They can be safely used to store configuration information for devices
other then those defined by the EISA specification [EISA]. Virtual slots are used to store the
configuration information for PCI devices. In case of multi-function PCI devices, a single virtual slot will
be used for multiple PCI functions that are associated with one PCI board.

Support for virtual slots is optional in the EISA specification. However, the ESCD specification requires
that EISA systems support virtual slots. The number of virtual slots that need to be supported is
dependent on the number of PCI devices that can be present in the system.

ESCD Specification V1.02A

escd.rtf Page 9

4. Storing of DCD Information
When compared to (E)ISA devices, DCDs need to store certain additional information. This additional
information is stored in the ECD as free form data. The ECD structure is defined in escdfmt.h (see
Appendix C). ECD is always the last function in the slot record for a DCD and is always disabled. The
function information byte in the ECD (i.e., the bFuncInfo field) must be set to value 0xC0 to identify the
ECD as an EISA free-format disabled function. The format for each type of DCD is now described in
turn.

A single-function PCI device is described as follows:
i) a standard EISA function containing the resource usage for function number 0 on the PCI

device
ii) the ECD

If the PCI device has several functions, there are several standard EISA functions in the slot record
prior to the ECD, with each standard EISA function corresponding to one function in the PCI device.
Since there is no correspondence between the EISA function number and the PCI function number (i.e.,
EISA function number one could be describing the PCI device function number three), the ECD
contains the necessary information that allows correct interpretation. For more details see section 5.6.
Resource information for each function of the multi-function PCI device is stored within the same virtual
slot.

The following figure illustrates the constituents of one virtual slot record for a PCI device with two PCI
functions.

ESCD Component Description

Function 0 Standard EISA function to store resource
information for the PCI function #0

Function 1 Standard EISA function to store resource
information for the PCI function #3

Function 2 Disabled function, containing the ECD for PCI
functions #0 and #3.

A single-function Plug and Play ISA card is described as follows:
i) a standard EISA function containing resource usage for one function of the device
ii) the ECD

ESCD Specification V1.02A

escd.rtf Page 10

If the Plug and Play ISA card has several functions, there are several standard EISA functions in the slot
record prior to the ECD, with each standard EISA function corresponding to one function on the board.

The following figure illustrates the layout of a slot record for a three-function Plug and Play ISA card:

ESCD Component Description

Function 0 Standard EISA function to store resource
information for PnP ISA logical device # 0

Function 1 Standard EISA function to store resource
information for PnP ISA logical device # 1

Function 2 Standard EISA function to store resource
information for PnP ISA logical device # 2

Function 3 Disabled function, containing the ECD

5. Reconfiguration of DCDs
The DCDs are re-configurable at run-time, while the traditional (E)ISA devices are not. When an
(E)ISA device is configured at a particular resource, either some jumper needs to be changed or a
software utility needs to be run to re-configure the device (soft-settable (E)ISA devices allow for
greater ease-of-use as far as re-configuration is concerned). On the other hand, PCI devices can be
configured at one of several resource values depending on the availability of resources. This implies that
the resources that are currently allocated to DCDs can be re-used for some static (E)ISA device. This
would be desirable if, for example, the DCD resources are the only resources with which the static
(E)ISA devices can be configured. At the next system boot, the DCD would then get re-configured
with a different, non-conflicting resource.

Configuration utilities that understand the ESCD will be cognizant of DCDs (and the fact that they are
re-configurable) and will be able to utilize the resource information of the DCDs and possibly re-allocate
those resources to an add-in card when necessary. However, there are current implementations of
ECUs that are not aware of DCDs and do not understand ESCD. In order to make re-configuration
work even with these legacy ECUs, a few additional requirements in the ESCD must be specified.

There are two type of DCDs - namely those functions that need to be configured and activated by the
PnP BIOS prior to OS initialization (bootable DCDs) and functions that can be reconfigured by the
Configuration Manager during OS initialization(non-bootable DCDs). The ability to re-configure DCDs
is dependent on the presence and capabilities of the PnP BIOS and Configuration Manager. The re-
configuration information for non-bootable DCDs is always available to the Configuration Manager who
can re-configure and activate any non-active DCD function. DCD functions that participate in the boot
process (i.e., they have the expansion AT-BIOS) can be only re-configured by the system BIOS that
contains PnP BIOS extensions. If the PnP BIOS does not have access to NVS to store the re-
configuration information about bootable DCD function, then the bootable DCD function is not re-

ESCD Specification V1.02A

escd.rtf Page 11

configurable. To provide the Configuration Utility with the knowledge about DCD function re-
configurability, the utility can examine the fwECDFuncsCannotConfig bit-map field defined in the
ECD_FREEFORMBRDHRD structure. Each bit in the bit-map field that is set to 0 represents a DCD
function that is re-configurable.

5.1 Re-configurability with Legacy ECUs

The DCD configuration information will be stored in the appropriate slots as described in Chapter 4 of
this document. Because the slot records (virtual slots for the PCI devices or the expansion slots for
Plug and Play ISA boards) containing DCD records do not have corresponding CFG files, a legacy
ECU1 will delete these records from NVS. Since the ECU will not consider the resources contained in
these records, it will be able to re-allocate the resources of the DCDs.

At the next boot, the DCDs will get re-configured at their new values (around the resources being used
by (E)ISA devices). Note that this re-configuration at boot requires the presence of the Configuration
Manager (CM). Thus, although the ECU is unaware of the DCDs and the CM, it is able to operate
with the CM in achieving re-configurability.

New ECUs can look at the additional fields in the ESCD and achieve both the disable functionality and
independently control re-configurability of DCD resources. The additional field that will allow new
ECUs to support disabling of functions is the fwECDFuncsDisabled bit-map in the ECD.

5.2 Implementing Disabled DCD Functions

The ECD (which is present for every DCD) contains the fwECDFuncsDisabled field. This field is a
bit-map of disabled functions for that particular device (board). Since the ECD is a free format disabled
function it will be ignored by the ECU. The Acfg BIOS or CM will use the disabled bit map in the ECD
to determine which functions in that device need to be configured.

The function enable field in the EISA standard function of each DCD will be used by the Acfg BIOS
and the CM to determine whether the resources for that function have been locked (or reserved) to
their previous configuration. If the enable bit is found to be set for a particular DCD function, then that
DCD function needs to come back up with the same resource configuration. If the DCD function is
found to be disabled, then the Acfg BIOS or the CM does not have to configure that DCD function to
the resources specified in the function.

5.3 Implementing Locked DCD Functions

The EISA specification only defines the mechanism for locking resources at the granularity of boards
[EISA]. Thus, if a board is locked, all the functions within that board are also locked. Similarly,
unlocking a board unlocks all the functions within that board. A board (and all of the functions
associated with the board) is locked by setting the lock bit in byte one of the ID and slot information
field of that board.

1For this sub-section only, unless otherwise specified, an ECU refers to a legacy ECU.

ESCD Specification V1.02A

escd.rtf Page 12

With the ESCD, a finer granularity of locking is achieved for DCDs because the user is now able to
reserve the resources at the DCD function level without locking all the resources at the board level.
This is achieved by the combination of turning the lock bit in the board on and turning on the enable
bit for the DCD function.

When the status of the standard format EISA function that describes the corresponding DCD is
changed from disabled to enabled, and the lock bit for the board is enabled, the configuration resources
for the target device become locked. The Acfg BIOS or CM will check both the board lock bit and
the function enable bit before attempting to configure the device.

To summarize, the board lock bit indicates that there is one or more functions with resources that are
locked. The enabled functions in that device are locked and their resources are fixed while the
resources of disabled functions can be re-configured as required. See Appendix B for a more detailed
explanation on the interpretation of configuration states.

It is the responsibility of the CM or the Configuration Utility to correctly update both the board lock bit
and the standard EISA function disable bit when processing the lock and unlock requests for the DCDs.

5.4 DCD Configuration Errors

Depending on the requirement of device availability at pre-boot or post-boot time, either the Acfg
BIOS or CM will configure the DCDs. Because device re-configuration may not always succeed, the
agent attempting to configure the DCD needs a mechanism for reporting configuration errors.

The EISA specification only defines the mechanism for signaling configuration failure at the granularity of
boards [EISA]. Thus, there is no way to distinguish between configuration failures occurring on more
than one function. Board configuration error is indicated by setting the configuration status bit in byte
one of the ID and slot information field of that board to one.

With the ESCD, a finer granularity of configuration error reporting is possible for DCDs by utilizing the
fwECDFuncsCfgErrors bit-map field in the ECD. This is achieved by turning the configuration bit
status for the board off and turning the function bit in the fwECDFuncsCfgErrors on for the DCD.

The Acfg BIOS, CM, and Configuration Utility will check both the board configuration status bit and
the ECD configuration errors bit map when resolving configuration errors.

When the Acfg BIOS or the CM is unable to correctly configure one or more of the DCD functions, it
needs to report the failures with this mechanism.

5.5 Plug and Play ISA devices

The configuration of the Plug and Play ISA cards is reflected in the system by storing relevant
information in the expansion slots one through fifteen. The slot will contain one or more standard EISA
functions that are followed by one ECD function. The ECD contains both generic and device type
specific information. The Plug and Play ISA card specific information is kept in the ECD_PNPBRDID
structure. This structure contains the vendor id and the device serial number that are needed for
device identification. This structure is part of the PNPFREEFORMFUNC structure included in the
ECD for the Plug and Play ISA board.

5.6 PCI Devices

ESCD Specification V1.02A

escd.rtf Page 13

The configuration of PCI devices is reflected in the system by storing relevant information in the virtual
slots numbered 16 through 64. One virtual slot will contain a variable number (one to eight) of standard
EISA functions (describing the resources used by the individual PCI functions) followed by the ECD
function. The design of the Acfg BIOS and the CM requires that the location of specific PCI devices
be determined. This in turn necessitates the use of the bus number, the device/function number and
the device id, vendor id. This PCI specific information is kept in the ECD_PCIBRDID structure.
Several instances of ECD_PCIBRDID structure will be present (one to eight according to the PCI
specification [PCI]), depending on the number of the individual functions that constitute the multi-
function PCI device.

6. ESCD Description
6.1 Difference Between EISA and ISA Systems

The EISA specification defines the layout of the NVRAM for storing the configuration of mother-board
and (E)ISA devices [EISA]. The ESCD extensions in this environment are limited to the following items
for DCDs only:

• ECD function for DCDs

• handling of disabled functions

• re-definition of locking

• handling of configuration errors

For EISA systems, the ESCD_BRDHDR and the ESCD_CFGHDR structures are not required and
will not be present. The clients that require access to the EISA NVRAM can use the mechanism
described in the EISA specification [EISA].

In an ISA environment the layout of ESCD conforms to the format described in section 6.2. It requires
that configuration information for each slot be preceded by the ESCD_BRDHDR structure. The NVS
will always contain the ESCD_CFGHDR and the checksum. The ESCD functions, described in section
8, provide uniform access to the NVS. All ESCD extensions are applicable and required in the ISA
environment.

6.2 The ESCD format

The ESCD file format closely resembles the NVS as described by the EISA specification. It contains
the combination of control and configuration data. The resource limitations of EISA configuration data
is also applicable to the ESCD format. The following table is the graphical representation of the
individual data structures that collectively describe the ESCD for a system that contains a combination
of (E)ISA and DCDs:

Data Structure Description

ESCD_CFGHDR File configuration header

ESCD_BRDHDR Header for slot 1, (E)ISA board

ESCD Specification V1.02A

escd.rtf Page 14

EISA_PackedData Packed data for the (E)ISA-board

ESCD_BRDHDR Header for slot 3, Plug and Play ISA board

EISA_PackedData Packed data for the PnP ISA-card that contains
two functions: 2 std EISA function plus ECD
disabled function plus slot checksum word.

• •

• •

ESCD_BRDHDR Header for Virtual slot 16, single function #0 PCI
device

EISA_PackedData Packed data for the PCI device, function #0: one
disabled std EISA function plus ECD disabled
function plus slot checksum word.

ESCD_BRDHDR Header for Virtual slot 17, multi-function PCI
board with three non-contiguous functions

EISA_PackedData Packed data for the PCI board, functions #0, #3
and #5 -- three disabled std EISA format
functions plus ECD disabled function plus slot
checksum WORD.

ESCD_BRDHDR Header for slot 0, mother-board

EISA_PackedData Packed data for the mother-board plus slot
checksum word.

CheckSum Two bytes check sum for ESCD file.

The order of the slots in the above table is for illustration only. The program that uses the data can
determine the slot position by examining the content of the bSlotNum field in the ESCD_BRDHDR.
The ECD disabled function for PCI is described by the PCIFREEFORMFUNC structure. The ESD
disabled function for PnP is described by the PNPFREEFORMFUNC structure. For detailed
descriptions of the individual data structures shown in the above table, refer to the definitions in
Appendix C.

Slot checksum is a 16-bit logical (modulo 64K) sum of ASCII values of the EISA_PackedData. ESCD
file checksum is a 16-bit logical (modulo 64K) sum of ASCII values in the ESCD file. Slot checksum is
optionally calculated by the caller. ESCD file checksum must be calculated by the BIOS on a write to
ESCD.

7. Using the CM
A system configuration utility can use the CM interface in performing the services offered by the
Configuration Manager. However, caution should be exercised so that lock (or unlock) configuration
requests to CM are not mixed with configuration utility updating of the NVS. The lock/unlock request
to CM results in immediate update of NVS. If the Configuration Utility has a copy of the NVS before
requesting the CM to lock device configuration and then decides to update the NVS itself, the effect of
a CM lock request will be lost.

ESCD Specification V1.02A

escd.rtf Page 15

8. PnP BIOS ESCD Access Interfaces
The Plug and Play BIOS specification defines BIOS interfaces to access system configuration
information. The Plug and Play BIOS will implement three interfaces to obtain information about the
ESCD and read/write of the data. These interfaces follow the function calling prototype of the form

 int FAR (*entryPoint)(int Function, ...);

that is fully described in the Plug and Play BIOS specification. System software will interface with all of
the ESCD functions described in this specification by making a far call to this entry point. As noted
above the caller will pass a function number and a set of arguments based on the function being called.

The extended configuration services are a mechanism whereby the system software may lock the system
resource configuration for specific devices by explicitly assigning a configuration to the device. This will
allow the Plug and Play system BIOS to fully configure the system at power up and allocate the system
resources assigned to the device by the system software. The system resource configuration information
for the devices in the system must follow the specified format. The format for maintaining the
configuration information in non-volatile storage is the standard EISA packed configuration data block
structure with some necessary extensions. The EISA packed configuration data block is defined in the
EISA Specification [EISA]. The necessary extensions to the EISA format are encompassed in a data
structure referred to as Extended System Configuration Data (ESCD). ESCD is a data structure that is
used to store information about Plug and Play devices that could not be stored in the EISA structures.
It is assumed that adhering to this definition will ensure upward compatibility with current EISA
implementations and device drivers. Refer to Appendix A for more information on the Extended
System Configuration Data (ESCD) format.

The primary purpose of these interfaces is to provide a mechanism for system software to specify the
system resources assigned to the devices in the system, which will enable the system BIOS to fully
configure the system at power up.

If necessary, the system BIOS can determine the size of the data in the ESCD from the ESCD
Configuration Header Structure when required to update and/or modify the contents of the ESCD.
Refer to Appendix A for more information on the format of the ESCD data. Note that the information
passed in the Read and Write Extended System Configuration Data function calls need not be stored
in the ESCD format. The ESCD structure only refers to the format in which the data is passed between
the Operating System and the System BIOS. The data may be stored in any format the system vendor
chooses.

When a call is made to the Write Extended System Configuration Data(ESCD) BIOS function, it is
the responsibility of the caller to ensure that the system board device information in Slot 0 is also
updated to the device nodes using the Set System Device Node function. Further, the system BIOS is
responsible for constructing the current system board image (namely, Slot 0 record) from the current
configuration of the System Device Nodes on boot. The presence of Slot 0 record in ESCD is required.
Further, there is a one-to-one correspondance between the System Device Nodes and the functions in
Slot 0 record. The enumeration order of the System Device Nodes is used in establishing the
correspondance between the System Device Nodes and functions in Slot 0.For example, ESCD slot 0

ESCD Specification V1.02A

escd.rtf Page 16

record for a system with 5 device nodes numbered 1, 3, 5, 6, 7 should reflect the device nodes as
functions 1, 2, 3, 4 and 5.

8.1. Function 41h - Get Extended System Configuration Data (ESCD) Information

Synopsis:

int FAR (*entryPoint)(Function, MinESCDWriteSize, ESCDSize, NVStorageBase, BiosSelector);
int Function; /* PnP BIOS Function 041h */
unsigned int FAR *MinESCDWriteSize; /* Minimum buffer size in bytes for writing to NVS */
unsigned int FAR *ESCDSize; /* Size allocated for the ESCD... */
 /* ...within the non-volatile storage block */
unsigned long FAR *NVStorageBase; /* 32-bit physical base address for... */
 /* ...memory mapped non-volatile storage media */

unsigned BiosSelector; /* PnP BIOS readable/writable selector */

Description:

This function provides information about the non-volatile storage on the system that contains the
Extended System Configuration Data (ESCD). It returns the size, in bytes, of the minimum buffer
required for writing to NVS in MinESCDWriteSize, the maximum size, in bytes, of the block within the
non-volatile storage area allocated specifically to the ESCD in ESCDSize, and if the nonvolatile storage
is memory mapped, the 32-bit absolute physical base address will be returned in NVStorageBase. The
physical base address of the memory mapped non-volatile storage will allow the caller to construct a
16-bit data segment descriptor with a limit of at 64K and read/write access. This will enable the Plug
and Play system BIOS to read and write the memory mapped non-volatile storage in a protected mode
environment. If the non-volatile storage is not memory mapped the value returned in NVStorageBase
should be 0. It is assumed that the size of the non-volatile storage which contains the ESCD will not
exceed 32K bytes.

The portion of non-volatile storage used to store the Extended System Configuration Data (ESCD) may
only be a subset of the total non-volatile storage available on the system. In addition, only the system
BIOS knows where the ESCD resides in the system's non-volatile storage and the proper method for
accessing the non-volatile storage. Therefore, the caller should never attempt to directly access the
ESCD. System software should utilize the Read Extended System Configuration Data and Write
Extended Configuration Data functions described in this specification.

The BiosSelector parameter enables the system BIOS, if necessary, to update system variables that are
contained in the system BIOS memory space. If this function is called from protected mode the caller
must create a data segment descriptor using the 16-bit Protected Mode data segment base address
specified in the Plug and Play Installation Check data structure, a limit of 64k, and the descriptor must
be readable and writable. If this function is called from real mode BiosSelector should be set to the
Real Mode 16-bit data segment address as specified in the Plug and Play Installation Check structure.
Refer to section 4.4 in the Plug and Play BIOS specification for more information on the Plug and Play
Installation Check Structure and the elements that make up the structure.

The function is available in real mode and 16-bit protected mode.

ESCD Specification V1.02A

escd.rtf Page 17

Note that this function may also be accessible through the INT 1Ah interface. Refer to Intel PnP BIOS
Extensions Design Guide [ACFG] for details.

Returns:

0 if successful - SUCCESS
!0 if an error occurred - error code (The function return codes are described in Appendix D)

The FLAGS and registers will be preserved, except for AX which contains the return code.

Example:

The following example illustrates how the 'C' style call interface could be made from an assembly
language module:

 .
 .
 .
 push Bios Selector
 push segment/selector of NVStorageBase ; Pointer to 32-bit physical base address
 push offset of NVStorageBase
 push segment/selector of ESCDSize ; Pointer to size of ESCD
 push offset of ESCDSize
 push segment/selector MinESCDWriteSize ; Pointer to MinESCDWriteSize block size
 push offset of MinESCDWriteSize
 push GET_ESCD_SIZE ; Function 041h
 call FAR PTR entryPoint
 add sp,16 ; Clean up stack
 cmp ax,SUCCESS ; Function completed successfully?
 jne error ; No-handle error condition
 .
 .
 .

8.2. Function 42h - Read Extended System Configuration Data (ESCD)

Synopsis:

int FAR (*entryPoint)(Function, ESCDBuffer, ESCDSelector, BiosSelector)
int Function; /* PnP BIOS Function 042h */
char FAR *ESCDBuffer; /* Address of caller's buffer for storing
 ESCD */
unsigned ESCDSelector; /* ESCD readable/writable selector */
unsigned BiosSelector; /* PnP BIOS readable/writable selector */

Description:

This function is used to read the ESCD data from nonvolatile storage on the system into the buffer
specified by ESCDBuffer. The entire ESCD will be placed into the buffer. It is the responsibility of the

ESCD Specification V1.02A

escd.rtf Page 18

caller to ensure that the buffer is large enough to store the entire ESCD. The caller should use the
output from Function 41 (the ESCDSize field) when calculating the size of the ESCDBuffer. The
system BIOS will return the entire ESCD, including information about system board devices. The
system board device configuration information will be contained in the slot 0 portion of the ESCD. The
system BIOS can determine the size of the data in the ESCD from the ESCD Configuration Header
Structure. Refer to Appendix A for more information on the format of the ESCD data.

The ESCDSelector parameter is required when the Get Extended System Configuration Data
Information function has returned a 32-bit absolute physical base address for the non-volatile storage
media and this function is going to be called from protected mode. In this case, it is the responsibility of
the caller to construct a 16-bit data segment descriptor with base = NVStorageBase, a limit of 64K
and read/write access. In real mode, the ESCDSelector is a segment that points to NVStorageBase. If
the Get Extended System Configuration Data Information function returned 0 for the 32-bit
physical base address of the non-volatile storage, this parameter should be 0.

The BiosSelector parameter enables the system BIOS, if necessary, to update system variables that are
contained in the system BIOS memory space. If this function is called from protected mode the caller
must create a data segment descriptor using the 16-bit Protected Mode data segment base address
specified in the Plug and Play Installation Check data structure, a limit of 64K, and the descriptor must
be readable and writable. If this function is called from real mode, BiosSelector should be set to the
Real Mode 16-bit data segment address as specified in the Plug and Play Installation Check structure.
Refer to section 4.4 in the Plug and Play BIOS specification for more information on the Plug and Play
Installation Check Structure and the elements that make up the structure.

The function is available in real mode and 16-bit protected mode.

Note that this function may also be accessible through the INT 1Ah interface. Refer to Intel PnP BIOS
Extensions Design Guide [ACFG] for details.

Returns:

0 if successful - SUCCESS
!0 if an error occurred - error code (The function return codes are described in Appendix D)

The FLAGS and registers will be preserved, except for AX which contains the return code.

Example:

The following example illustrates how the 'C' style call interface could be made from an assembly
language module:

 .
 .
 .
 push Bios Selector
 push ESCD Selector ; ESCD selector if protected mode and NVS is
 ; memory mapped, otherwise 0
 push segment/selector of ESCDBuffer ; Pointer to caller's ESCD memory buffer
 push offset of ESCDBuffer
 push READ_ESCD ; Function 042h
 call FAR PTR entryPoint

ESCD Specification V1.02A

escd.rtf Page 19

 add sp,10 ; Clean up stack
 cmp ax,SUCCESS ; Function completed successfully?
 jne error ; No-handle error condition

 .
 .
 .

8.3. Function 43h - Write Extended System Configuration Data (ESCD)

Synopsis:

int FAR (*entryPoint)(Function, ESCDBuffer, ESCDSelector, BiosSelector);
int Function; /* PnP BIOS Function 043h */
char FAR *ESCDBuffer; /* Buffer containing complete ESCD to write... */
 /* ...to non-volatile storage */
unsigned ESCDSelector; /* ESCD readable/writable selector */
unsigned BiosSelector; /* PnP BIOS readable/writable selector */

Description:

This function will write the Extended Static Configuration Data (ESCD) contained in the ESCDBuffer
to non-volatile storage on the system. The data contained in the caller's buffer must contain a complete
block of ESCD structures describing the configuration information for devices on the system. The
caller should use the output from Function 41 (the MinESCDWriteSize field) when calculating the size
of the ESCDBuffer. Reconfiguration of the system board devices must be handled through Get System
Device Node and Set System Device Node functions as described in Plug and Play BIOS. The system
BIOS can determine the size of the data in the ESCD from the ESCD Configuration Header
Structure within the caller's ESCD buffer. Refer to Appendix A for more information on the format of
the ESCD data.

The ESCDSelector parameter is required when the Get Extended System Configuration Data
Information function has returned a 32-bit absolute physical base address for the non-volatile storage
media and this function is going to be called from protected mode. It is the responsibility of the caller to
construct a 16-bit data segment descriptor with base = NVStorageBase,a limit of 64K and read/write
access. In real mode, the ESCDSelector is a segment that points to NVStorageBase. If the Get
Extended System Configuration Data Information function returned 0 for the 32-bit physical base
address of the non-volatile storage, this parameter should be 0.

The BiosSelector parameter enables the system BIOS, if necessary, to update system variables that are
contained in the system BIOS memory space. If this function is called from protected mode, the caller
must create a data segment descriptor using the 16-bit Protected Mode data segment base address
specified in the Plug and Play Installation Check data structure, a limit of 64K, and the descriptor must
be readable and writable. If this function is called from real mode, BiosSelector should be set to the
Real Mode 16-bit data segment address as specified in the Plug and Play Installation Check structure.
Refer to Plug and Play BIOS specification (section 4.4) for more information on the Plug and Play
Installation Check Structure and the elements that make up the structure.

The function is available in real mode and 16-bit protected mode.

ESCD Specification V1.02A

escd.rtf Page 20

Note that this function may also be accessible through the INT 1Ah interface. Refer to Intel PnP BIOS
Extensions Design Guide [ACFG] for details.

Returns:

0 if successful - SUCCESS
!0 if an error occurred - error code (The function return codes are described in Appendix D)

The FLAGS and registers will be preserved, except for AX which contains the return code.

Example:

The following example illustrates how the 'C' style call interface could be made from an assembly
language module:

 .
 .
 .
 push Bios Selector
 push ESCD Selector ; ESCD selector if protected mode and NVS is
 ; memory mapped, otherwise 0
 push segment/selector of ESCDBuffer ; pointer to ESCD Buffer
 push offset of ESCDBuffer
 push WRITE_ESCD ; Function 043h
 call FAR PTR entryPoint
 add sp,10 ; Clean up stack
 cmp ax,SUCCESS ; Function completed successfully?
 jne error ; No-handle error condition
 .
 .
 .

ESCD Specification V1.02A

escd.rtf Page 21

Appendix A: Extended System Configuration Data (ESCD)
This appendix describes the format of non-volatile storage for storing configuration information about
the devices installed in the system and assumes that the reader is familiar with the EISA data structures
and definitions as specified in the EISA Specification Version 3.12 from BCPR Services, Inc. Unless
otherwise stated, this document conforms to, and complies with the EISA specification.

ESCD Configuration Header (ESCD_CFGHDR):
Field Offset Length Value

Size 00h WORD Varies
Signature 02h DWORD "ACFG" (ASCII)
Minor version number 06h BYTE Varies
Major version number 07h BYTE 02h
Board count 08h BYTE Varies
Reserved 09h 3 BYTES 0's

Size: Specifies the size of the ESCD data in non-volatile storage.
Signature: The ASCII string "ACFG" identifies the data in the non-volatile storage as Extended

Configuration Data.
Minor and Major version: Current version support. The minor version number should be greater

than or equal to 0. The major version number should be set to 2 to indicate Version 2 of
the ESCD specification.

Board count: Specifies the number of boards in the Extended Configuration Data block.

ESCD Board Header (ESCD_BRDHDR):
Field Offset Length Value

Size 00h WORD Varies
Slot number 02h BYTE Varies
Reserved 03h BYTE 0's

Size: Size of the ESCD board header structure.
Slot number: Identifies the slot the board is plugged into on the system.

Extended Configuration Data Freeform Board Header (ECD_FREEFORMBRDHDR):
Field Offset Length Value

Signature 00h DWORD "ACFG" (ASCII)
Minor version number 04h BYTE Varies
Major version number 05h BYTE 02h
Board Type 06h BYTE Varies
Reserved 07h BYTE 0
Disabled Functions 08h WORD Varies
Configuration Error Functions 0Ah WORD Varies
Functions are re-configurable 0Ch WORD Varies

Signature: Identifies the start of the ECD freeform header and should be initialized to "ACFG".

ESCD Specification V1.02A

escd.rtf Page 22

Minor version number: Provides current version information and should be greater than or equal
to 0.

Major version number: Provides current version information and should be set to 2 indicate
Version 2 of the ESCD specification.

Board type: Identifies the type of board and should be one of the following: ISA=01h, EISA=02h,
PCI=04h, PCMCIA=08h, PNPISA=10h, MCA=20h.

Disabled Functions: Bitmap that specifies the functions that are disabled on the device. For
instance, bit 4 is set to a one indicates that function 4 on the device is disabled. Note that
EISA function numbering scheme(i. e., starting with function number 1) is in effect.

Configuration Error Functions: Bitmap that indicates the function on the device has a
configuration error.

Functions are re-configurable: Bitmap that indicates which of the functions on the device can be
re-configured by either the PnP BIOS or the Configuration Manager.

Freeform PCI Device Identifier and Data (ECD_PCIBRDID):
Field Offset Length Value

Bus number 00h BYTE Varies
PCI device and Function number 01h BYTE Varies
PCI device identifier 02h WORD Varies
PCI vendor identifier 04h WORD Varies
Reserved 06h 2 BYTES 0's

Bus number: Represents the PCI bus number (0-255).
PCI device and Function number: Specifies the PCI device and function numbers.

 Bits 7:3 - Device number (0-31).
 Bits 2:0 - Function number (0-7).

PCI device identifier and PCI vendor identification: Provide the device and vendor
identification for the PCI hardware. Refer to the PCI Specification for more information
about these identifiers.

Freeform Plug and Play ISA Board Identifier (ECD_PNPBRDID):
Field Offset Length Value

Vendor identifier 00h DWORD Varies
Serial number 04h DWORD Varies

 Vendor identifier: Unique 32-bit EISA identifier.

 Serial number: Differentiates between multiple cards that have the same vendor
 identifier when they are plugged into the system.

 Refer to the Plug and Play ISA Specification for more information on the Vendor
 Identifier and Serial number.

Plug and Play ISA Extended Configuration Data (ECD) function (PNPFREEFORMFUNC):
Used as the last function for a specific Plug and Play ISA board.

ESCD Specification V1.02A

escd.rtf Page 23

Field Offset Length Value
Function size 00h WORD 28 (1Ch)
Selection size 02h BYTE 01h
Selection data 03h BYTE 00h
Function information byte: Identifies free format
configuration data block(bit 6) and disabled (bit 7)

04h BYTE 0Ch

Free format data size 05h BYTE 18h
ECD_FREEFORMBRDHDR (see structure
definition above)

06h 16 BYTES Varies

ECD_PNPBRDID (see structure definition above) 16h 8 BYTES Varies

Function size: Specifies the size of the structure.
Selection size: Represents the length or number of selection bytes that follow. This field should

be initialized to 01h.
Selection data: Identifies the functions selected on the board. This fields should be initialized to

00h.
Function information byte: Identifies this function as an Extended Configuration Data structure.

This value must be set to 0Ch, bit 6 and bit 7 set, which indicates free form data follows
and the function is disabled.

Free format data size: Size of the free format data that follows. This byte is not included in the
size value.

ECD_FREEFORMBRDHDR: Extended Configuration Data freeform board header. This data
structure is defined above.

ECD_PNPBRDID: This data structure specifies the Plug and Play ISA board identifier and serial
number. This data structure is defined above.

PCI Extended Configuration Data (ECD) function (PCIFREEFORMFUNC): Used as the last
function for a specific PCI board.

Field Offset Length Value
Function size 00h WORD Varies
Selection size 02h BYTE 01h
Selection data 03h BYTE 00h
Function information byte: Identifies free format
configuration data block(bit 6) and disabled (bit 7)

04h BYTE 0Ch

Free format data size 05h BYTE Varies
ECD_FREEFORMBRDHDR (see structure
definition above)

06h 16 BYTES Varies

ECD_PCIBRDID (see structure definition above).
Array of 1 to 8 structures for multi-function PCI
boards.

16h 8 to 64
BYTES

Varies

Function size: Specifies the size of the structure.
Selection size: Represents the length or number of selection bytes that follow. This field should

be initialized to 1.
Selection data: Identifies the functions selected on the board. This fields should be initialized to 0.

ESCD Specification V1.02A

escd.rtf Page 24

Function information byte: Identifies this function as an Extended Configuration Data structure.
This value must be set to 0Ch, bit 6 and bit 7 set, which indicates free form data follows
and the function is disabled.

Free format data size: Size of the free format data that follows. This byte is not included in the
size value. Depending on the number of PCI board identifier (ECD_PCIBRDID) data
structures, the free format data size can be from 24 bytes long up to a maximum value of
80 bytes.

ECD_FREEFORMBRDHDR: Extended Configuration Data freeform board header. This data
structure is defined above.

ECD_PCIBRDID: This data structure specifies the PCI board identifier. This field is specified as
an array of structures in which there will be only one entry for each function on a multi-
function PCI board. This data structure is defined above. There can be from 1 to 8
structures specified here.

ESCD Specification V1.02A

escd.rtf Page 25

Appendix B State Table for DCD Configuration
The purpose of this Appendix is to explain the correlation of all the possible states of a DCD function
with the states of the following ESCD fields: EISA device lock bit, EISA function disable bit, and the
ECD fwECDFuncsDisabled bit.

From a user's perspective a DCD function can be in one of only three states:

S1. The DCD function is active and is fully re-configurable.

S2. The DCD function is disabled.

S3. The DCD function is active and its configuration resources are locked.

The [EISA] specification defines a disable bit for each function and a lock bit for the entire device. As
described in section 5 of this document, the EISA function disable bit is used to control re-configuration
of DCDs in legacy ECUs. In order to provide the disable functionality (that was originally provided by
the EISA function disable bit), the ECD defines the fwECDFuncsDisabled bit-map to indicate which
DCD functions are disabled. The combinations of these three fields result in eight possible states not all
of which are valid.

Before describing the eight states, we must ensure that the three fields are consistent with each other. If
the fwECDFuncsDisabled bit is 1 (i.e., the function is truly disabled) the states of the device lock bit
and the EISA function enable bits can be ignored in new ECUs. However, since the legacy ECUs do
not have access to the fwECDFuncsDisabled bit, the CM or the ACFG BIOS needs to set the states
of the device lock bit and the EISA function disable bit such that the legacy ECU interprets the fields
correctly.

The correctness criteria are defined by the following rules:

1) If the fwECDFuncsDisabled bit is 1, then the corresponding EISA function disable bit should
be forced to 1. If the EISA function disable bit is 0 (i.e., the legacy ECU interprets the function to
be enabled), the legacy ECU will not allocate the resources for that function to other devices. This is
an incorrect scenario because the function is truly disabled and is not using any resources that are
described in its EISA function.

2) If all the functions for a device do not have their EISA function disable bit set, then the
device lock bit should not be changed from its current state. The rule mentioned above changes
the state of the EISA function disable bit for one function. This rule specifies the follow-up action for
the device lock bit. It says that if there are any enabled functions in the device, the status of the lock
bit should remain unchanged. In other words, if by disabling a function (as a result of rule 1 above),
it turns out that all the functions of the device are disabled, then the lock bit can be reset. It is
possible that some legacy ECUs ignore the lock bit if all the functions in that device are disabled, but
this specification now requires that this bit be turned off to ensure consistency across all
implementations. The resulting interpretation of the device lock bit is that the lock bit is set if at least
one function in that device is not re-configurable.

3) The device lock bit in conjunction with the EISA function disable bit defines the locked status
of the function. If the device lock bit is set, then the lock status of the function is derived from the

ESCD Specification V1.02A

escd.rtf Page 26

status of the EISA function disable bit, i.e., if the EISA function disable bit is 0 then the function is
locked (its resources cannot be re-configured) and if the bit is 1 then the function is unlocked (its
resources can be re-configured). If the device lock bit is reset, the only valid state is for the function
to be fully re-configurable (i.e., the EISA function disable bit should be 1).

The CM or the ACFG BIOS will always modify the states of the three fields if they do not conform to
these correctness criteria. We thus arrive at the following state table:

Device EISA
function

ECD

lock
bit

disable
bit

disable
bit

Description

0 0 0 Invalid state because of rule 3). The CM or the ACFG BIOS will
correct this by changing the device lock bit to 1.

0 0 1 Invalid state because of rule 1). The CM or the ACFG BIOS will
correct this by changing the EISA function disable to 1.

0 1 0 S1; This is the normal state for DCD. This device can be fully re-
configured as needed.

0 1 1 S2; The DCD function is disabled and will not be configured by
ACFG BIOS or the CM.

1 0 0 S3; This DCD has locked resources.

1 0 1 Invalid state because of rule 1). The CM or the ACFG BIOS will
correct this by changing the EISA function disable bit to 1. Following
rule 2) the device lock bit may be changed to 0 depending on the
status of other functions in the device.

1 1 0 S1; The status of the device lock bit is valid only if there are other
functions in this device that have their EISA function disable bit set
to 0. If this is not the case then this state is invalid and will be
corrected by the ACFG BIOS or the CM according to rule 2). The
function whose EISA disable bit is shown in the state table here is
fully re-configurable.

1 1 1 S2; The status of the device lock bit is valid only if there is at least
one other function in this device that has its EISA function disable
bit set to 0. If that is not the case then this state is invalid and will be
corrected according to rule 2) by ACFG BIOS or the CM.

ESCD Specification V1.02A

escd.rtf Page 27

Appendix C Detailed ESCD Data Structure Specification

/***
 NAME
 escdfmt.h (Extended Static Configuration Data)
 PURPOSE
 Defines the structures needed to access the ESCD
 NOTES

1. The definitions here reflect additions to the packed Eisa format strucures. ESCD will be used to store
configuration information both on ISA and EISA systems.

2. ESCD definition differs slightly for ISA and EISA systems (refer to the ESCD documentation). ISA systems
do not have a notion of slots. The byte reserved for slot number in the ESCD (for ISA systems) is used to
create the abstraction of slots.

 3. Slot numbers 16-64 are referred to as Virtual Slots. Any peripheral, device or software that needs a
configuration file and is not covered by other device types can be specified as a virtual device.

4. Configuration information for PCI devices in an (E)ISA system, is stored in virtual slots.
5. Configuration information for PnP ISA devices in an (E)ISA system, is stored in slots one thru 15.
6. The slot zero has special meaning and is reserved for motherboard configuration.
7. It is a goal to use DCDs with old ECUs and achieve some amount of reconfigurability. This is achieved by

using the function enable/disable bit for slightly different purpose. Refer to the ESCD documentation for
more detailed description.

8. PnP ISA and PCI devices have device specific information that cannot be completly represented by the
EISA structures. For these devices only, this additional information will be stored in an EISA FreeFormat
function that is alway disabled and is always the last function in the slot record.

9. ESCD file checksum is a 16-bit logical (modulo 64K) sum of ASCII values in the ESCD file. ESCD file checksum
must be calculated by the BIOS on a write to ESCD.

 HISTORY:
 Version 0.15, created June 1993.
 Version 0.16, updated July 15 1993.
 Version 0.99, updated July 22 1993.
 Version 0.99a,updated August 10 1993.
 Version 1.00, updated October 1 1993.
 Version 1.02, updated February 14 1994.
 Version 1.02A, updated May 1994.

***/

#ifndef _ESCD
#define _ESCD

#ifndef BYTE
typedef unsigned char BYTE;
typedef unsigned short WORD;
typedef unsigned long DWORD;
typedef long LONG;
#endif
/* end of data types */

/***
 Standard EISA format definitions
***/

ESCD Specification V1.02A

escd.rtf Page 28

 /* Bytes #0 and #1 of ID and Slot Information */
typedef struct
{

BYTE bDupCFGNumId :4; /*Byte # 0: Bits 0-3 Numeric id for duplicate CFG filenames
 0000 - No duplicate CFG filenames
 0001 - 1st duplicate(1ACE0105)

 1111 - 15th duplicate(FACE0105) */
BYTE bSlotType :2; /* Byte # 0: Bits 4-5

 00 - Expansion Slot
 01 - embedded slot

 10 - virtual slot
 11 - reserved(0) */
 BYTE bIDReadable :1; /* Byte # 0: Bit 6
 0 - ID reabable
 1 - ID not reabable */
 BYTE bDupIDPresent :1; /* Byte # 0: Bit 7
 0 - no duplicate ID present
 1 - duplicate ID present */

 BYTE bBrdEISAEnableSupp: 1; /* Byte # 1: Bit 0 - board can be disabled = 1 */
 BYTE bBrdIochker : 1; /* Byte # 1: Bit 1 - IOCHKERR supported = 1 */
 BYTE bBrdOrEntryLck : 1; /* Byte # 1: Bit 2 - board or entries locked = 1 */
 BYTE bIdSlotResvrd : 3; /* Byte # 1: Bit 3-5 - reserved */
 BYTE bIdSlotNoCfgFile : 1; /* Byte # 1: Bit 6 - Board doesn't have/need cfg file = 1 */
 BYTE bBrdConfgStat : 1; /* Byte # 1: Bit 7 - config is completed = 0 */
 /* - config is not completed = 1 */
} EISAIDSLOTINFO;

 /* Function Information Byte #0 */
typedef struct
{
 BYTE bTypeSubTypeEntry : 1; /* Bit 0 - type subtype data = 1 */
 BYTE bMemoryEntry : 1; /* Bit 1 - mem entry data = 1 */
 BYTE bIrqEntry : 1; /* Bit 2 - IRQ data = 1 */
 BYTE bDmaEntry : 1; /* Bit 3 - DMA entry data = 1 */
 BYTE bPortRangeEntry : 1; /* Bit 4 - port range data = 1 */
 BYTE bPortInitEntry : 1; /* Bit 5 - port init data = 1 */
 BYTE bFreeFormEntry : 1; /* Bit 6 - free form data = 1 */
 BYTE bEISAFuncDisabled : 1; /* Bit 7 - enabled = 0, disabled = 1 */
} EISAFUNCENTRYINFO;

 /* Memory Info struct Bytes #0-6 */
typedef struct
{
 BYTE bMemRdWr : 1; /* Bit 0 - 0 = ROM, 1 = RAM */
 BYTE bMemCached : 1; /* Bit 1 - 0 = not cached */
 BYTE bMemChType : 1; /* Bit 2 - 1 = WB cache, 0=WT cache */
 BYTE bMemType : 2; /* Bits3-4 -00=sys, 01=exp, 10=vir,11=oth */
 BYTE bMemShared : 1; /* Bit 5 - 0 not=shared */
 BYTE bMemReserved1 : 1; /* Bit 6 - 0 = reserved */
 BYTE bMemMoreEntries : 1; /* Bit 7 - last entry = 0, more = 1 */
 /* Mem data size byte */
 BYTE bMemDataSize : 2; /* Bit 0-1 -00=byte,01=word,10=dwrd,11=rsv*/

ESCD Specification V1.02A

escd.rtf Page 29

 BYTE bMemDecodeSize : 2; /* Bit 2-3 -00=20,01=24,10=32,11=rsv*/
 BYTE bMemReserved2 : 4; /* Bit 4-7 -0 = reserved */
 /* memory start addr */
 BYTE bMemStartAddr0; /* LSByte (divided by 0x100) mem start */
 BYTE bMemStartAddr1; /* Middle Byte memory start */
 BYTE bMemStartAddr2; /* MSByte memory start */
 /* memory size */
 BYTE bMemSize0; /* LSByte (divided by 0x400) mem size */
 BYTE bMemSize1; /* LSByte=MSByte=0 means 64MB */
} EISAMEMORYINFO;

 /* IRQ Info struct Bytes #0-1 */
typedef struct
{
 BYTE bIrqNumber :4; /* Bit 0-3 - IRQ Number */
 BYTE bIrqRsvrd :1; /* Bit 4 - must be 0 */
 BYTE bIrqTrigger :1; /* Bit 5 - 0=Edge , 1=Level */
 BYTE bIrqType :1; /* Bit 6 - 0=Non-shared, 1=Sharable */
 BYTE bIrqMoreEntries :1; /* Bit 7 - 0=Last Entry, 1=More entires follow */

 BYTE bIrqReserved; /* Reserved (set to 0) */
} EISAIRQINFO;

 /* DMA Info struct Bytes #0-1 */
typedef struct
{
 BYTE bDmaNumber :3; /* Bits 0-2 - DMA Number(0-7) */
 BYTE bDmaReserved1 :3; /* Bits 3-5 Reserved (set to 0) */
 BYTE bDmaType :1; /* Bit 6 - 0=Non-Sharable, 1=Sharable */
 BYTE bDmaMoreEntries :1; /* Bit 7 - 0=Last Entry, 1=more entires follow */

 BYTE bDmaReserved2 :2; /* Bit 0-1 Reserved (set to 0) */
 BYTE bDmaTransferSize :2; /* Bits 2-3
 00 = 8bit transfer
 01 = 16bit transfer
 10 = 32bit transfer
 11 = 16bit transfer with byte count */
 BYTE bDmaTiming :2; /* Bits 4-5
 00 = Isa Compatible timing
 01 = Type "A"
 10 = Type "B"
 11 = Type "C"(Burst) */
 BYTE bDmaReserved3 :2; /* Bits 6-7 Reserved (set to 0) */
} EISADMAINFO;

 /* I/O ports Info struct Bytes #0-2 */
typedef struct
{
 BYTE bPortCount :5; /* Bit 0-4 Number of Ports
 0000 = 1Port
 0001 = 2Sequential Ports (and so on)
 1111 = 32Sequential Ports */
 BYTE bPortRsvrd :1; /* Bit 5 Reserved (set to 0) */
 BYTE bPortShared :1; /* Bit 6 0=Non-shared, 1=Sharable */

ESCD Specification V1.02A

escd.rtf Page 30

 BYTE bPortMoreEntries :1; /* Bit 7 - 0=Last Entry, 1=More entires follow */

 WORD wPortAddr; /* I/O Port Address */
} EISAPORTINFO;

 /* Init ports Info struct Bytes #0-2 */
typedef struct
{
 BYTE bAccessType :2; /* Bit 0-1
 00 - Byte address(8-bit)
 01 - Word address(16-bit)
 10 - Dword address(32-bit)
 11 - Reserved(0) */
 BYTE bPortMaskSet :1; /* Bit 2
 0 - Write value to Port(no mask)
 1 - Use mask and value */
 BYTE bInitReserved :4; /* Reserved(0) */
 BYTE bMoreEntries :1; /* 0 = Last Entry
 1 = More entries follow */
} EISAINITDATA;

 /* EISA free format data definition */
typedef struct
{
 BYTE bDataSize; /* Length of following data block */
 BYTE abData[203]; /* 203 bytes */
} EISAFREEFORMDATA;

/* eisa slot function config 320 bytes structure layout definition */
typedef struct
{
 BYTE bCompBrdID1; /* first byte of compressed board ID */
 BYTE bCompBrdID2; /* second byte of compressed board ID */
 BYTE bCompBrdID3; /* third byte of compressed board ID */
 BYTE bCompBrdID4; /* forth byte of compressed board ID */
 EISAIDSLOTINFO sIDSlotInfo; /* bit specific slot ID and slot info */
 BYTE bCFGMinorRevNum; /* minor revision of CFG file extension*/
 BYTE bCFGMajorRevNum; /* major revision of CFG file extension*/
 BYTE abSelections[26]; /* 26 bytes of selection information */
 EISAFUNCENTRYINFO sFuncEntryInfo; /* Func status and resources stat */
 BYTE abTypeSubType[80]; /* 80 character type/subtype field */
 union
 {
 struct
 {
 EISAMEMORYINFO asMemData[9]; /* 63 bytes mem cfg data */
 EISAIRQINFO asIrqData[7]; /* 14 bytes IRQ config data */
 EISADMAINFO asDmaData[4]; /* 8 bytes DMA channel info */
 EISAPORTINFO asPortData[20]; /* 60 bytes I/O port info */
 BYTE abInitData[60]; /* 60 bytes init. data */
 } sResData;
 EISAFREEFORMDATA sFFData; /* Free format data */
 } uFuncData;

ESCD Specification V1.02A

escd.rtf Page 31

} EISAFUNCCFGINFO;

/***
 End of Standard EISA format definitions
***/

/***/
/***/
/* Layout of the whole storage for the ESCD.img file */
/*
 1) Escd_CFGHDR. This contains the ESCD size, signature, version#, and the number of slot entries.

2) This is followed by board records that contain a board header and board data. Board header contains the
size of the board record and the slot number for the board. The board header is specific to ISA systems
only.

3) The packed data for each slot is preceeded by ESCDBrdHdr that contains the size and the slot# for the slot
data that immediately follows.

4) EISA format data for slot zero, the Mother-board: data for functions 0-n describing MB resources
5) EISA data for slots 1-15 describe EXP EISA and ISA boards: data in standard format for functions 0-n

corresponding to devices associated with the expansion boards.
6) ESCD data for slots 1-15 describing the PnP ISA boards:

• data for functions 0-n corresponding to devices on the expansion board. Unlocked PnP ISA devices
are described as disabled functions; locked PnP devices on the board are enabled functions.

 • disbled function n+1 describing extentions specific to PnP board type. The data uses free format spec.
7) ESCD data for slots 16-64 (Virtual slots) describe the PCI devices, one PCI board (device) per one slot:

• one or more standard EISA function(s) corresponding to the PCI function(s) 0-7 for the PCI device that
is located at Bus#,Dev# and Fun#0 address in the system. If the configuration for this device is
unlocked, the standard EISA format function(s) will be disabled; locked PCI function(s)will be enabled.

• a last function, the ECD describing the PCI specific information for the PCI function(s) 0-7.
8) There is a checksum at the end of the storage.

*/
/***/

/* The following structures describe the ESCD extensions. */

typedef struct
{
 WORD wEScdSize; /* Total Size of File/NVRAM */
 DWORD dSignature; /* Initialized to "ACFG" */
 BYTE bVerMinor; /* Minor #, should be >= 0 */
 BYTE bVerMajor; /* Major #, should be >= 2 */
 BYTE bBrdCnt;
 BYTE abEscdHdrReserved[3];
} ESCD_CFGHDR;

typedef struct
{
 WORD wBrdRecSize; /* Including this word */
 BYTE bSlotNum;
 BYTE bEscdBHdrReserved;
} ESCD_BRDHDR;

#define ESCD_SIGNATURE 0x47464341 /* ACFG characters */

ESCD Specification V1.02A

escd.rtf Page 32

 /* Free format last funct Board Header ecd extensions */
typedef struct
{
 /* Total size of 16 bytes */
 DWORD dSignature; /* Initialized to "ACFG" */
 BYTE bVerMinor; /* should be >= 00 */
 BYTE bVerMajor; /* Must be set to 0x02 */
 BYTE bBrdType; /* Board Type as in CM defintion */
 /* 0x01=isa, 0x02=eisa, 0x04=pci */
 /* 0x08=pcmcia, 0x10=PnP Isa, 0x20=mca */
 BYTE bEcdHdrReserved1; /* Reserved */
 WORD fwECDFuncsDisabled; /* 16 PnP functions disabled bit-map */
 WORD fwECDFuncsCfgError; /* 16 PnP functions config error status bit-map */
 /* This reserved field will now be used BYTE abEcdHdrReserved2[4]; Reserved */
 WORD fwECDFuncsCannotConfig; /* 16 PnP funct bit-map to indicate *
 /* if the device is reconfigurable*/
 /* For each bit 0 - Reconfigurable 1- Not reconfigurable */
 BYTE abEcdHdrReserved[2]; /* Reserved */
} ECD_FREEFORMBRDHDR;

 /* Free Fmt PCI device identifier and data */
typedef struct
{
 BYTE bBusNum; /* PCI Bus Number (0-255) */
 BYTE bDevFuncNum; /* PCI defined Device (0-31) and Func 0-7) Number */
 /* Device # in bits 7:3, Function # in bits 2:0 */
 WORD wDeviceId; /* PCI device ID */
 WORD wVendorId; /* PCI vendor ID */
 BYTE abPciBrdReserved[2]; /* Reserved */
} ECD_PCIBRDID;

 /* Free Fmt PnP ISA board identifier */
typedef struct
{
 DWORD dVendorId; /* PnP ISA vendor ID, 4 char */
 DWORD dPnPSerialNum; /* Board/Device serial # identifier */
} ECD_PNPBRDID;

 /* PnP ISA ECD extention function, a last function per board */
typedef struct
{
 WORD wFuncSize; /* Size set to 28 */
 BYTE bSelectionSize; /* initialize to 1 */
 BYTE bSelectionData; /* initialize to 0 */
 BYTE bFuncInfo; /* FreeFormat, disabled bit set (set to 0xC0) */
 BYTE bFreeFormSize; /* Size of following free fmt data, excl this byte Size set to 24: sizeof
 ECD_FREEFORMBRDHDR + PnP specific data */
 ECD_FREEFORMBRDHDR sFFBrdHdr; /* sizeof struct = 16 bytes */
 ECD_PNPBRDID sPnPBrdId; /* sizeof struct =8 bytes */

} PNPFREEFORMFUNC;

ESCD Specification V1.02A

escd.rtf Page 33

 /* PCI ECD extention function, a last function per board/device */
typedef struct
{
 WORD wFuncSize; /* set to min of 28 for single PCI function */
 /* and to 86 for eight functions PCI card */
 BYTE bSelectionSize; /* initialize to 1 */
 BYTE bSelectionData; /* initialize to 0 */
 BYTE bFuncInfo; /* FreeFormat, disabled bit set (set to 0xC0) */
 BYTE bFreeFormSize; /* Size of following free fmt data, excl this byte
 Size set to max of 80: sizeof ECD_FREEFORMBRDHDR
 + PnP specific data allowed intry is 24 or 32 or 40 .. 80 */
 ECD_FREEFORMBRDHDR sFFBrdHdr; /* sizeof struct = 16 bytes */
 ECD_PCIBRDID sPCIBrdId[8]; /* sizeof struct = Maximum of 8*8 bytes */
 /* There will be only one sPCIBrdId entry for each function on
 a multi-function PCI card */
} PCIFREEFORMFUNC;

/* End of the ECD extensions. */
/***/
#endif
/* end of _ESCD definition */

ESCD Specification V1.02A

escd.rtf Page 34

Appendix D ESCD Access Functions Return Codes

The following table defines the return codes for the Plug and Play BIOS functions dealing with ESCD
access.

Return Code Value Description

SUCCESS 00h Function completed successfully
FUNCTION_NOT_SUPPORTED 81h The function is not supported on this system.
ESCD_IO_ERROR_READING 55h The system BIOS could not read or write the Extended

System Configuration Data (ESCD) from nonvolitale
storage

ESCD_INVALID 56h The system does not have a valid Extended System
Configuration Data (ESCD) in nonvolitale storage.

ESCD_BUFFER_TOO_SMALL 59h The memory buffer passed in by the caller was not
large enough to hold the data to be returned by the
system BIOS.

ESCD_NVRAM_TOO_SMALL 5Ah All of the ESCD cannot be stored in the NVRAM
storage available on this system.

